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ABSTRACT

Uzun, Ali. Ph.D., Purdue University, December, 2003. 3-D Large Eddy Simulation
for Jet Aeroacoustics. Major Professors: Anastasios S. Lyrintzis and Gregory A.
Blaisdell.

Future design of aircraft engines with low jet noise emissions undoubtedly needs

a better understanding of noise generation in turbulent jets. Such an understanding,

on the other hand, demands very reliable prediction tools. This study is there-

fore focused on developing a Computational Aeroacoustics (CAA) methodology that

couples the near field unsteady flow field data computed by a 3-D Large Eddy Sim-

ulation (LES) code with various integral acoustic formulations for the far field noise

prediction of turbulent jets. Turbulent jet simulations were performed at various

Reynolds numbers. Comparisons of jet mean flow, turbulence statistics as well as jet

aeroacoustics results with experimental data of jets at similar flow conditions were

done and reasonable agreement was observed. The actual jet nozzle geometry was

not included in the present simulations in order to keep the computational cost at

manageable levels, therefore the jet shear layers downstream of the nozzle exit were

modelled in an ad hoc fashion. As also observed by other researchers, the results

obtained in the simulations were seen to be somewhat sensitive to the way the inflow

forcing was done. The study of the effects of the eddy-viscosity based Smagorinsky

subgrid-scale (SGS) model on noise predictions shows that the Smagorinsky model

suppresses the resolved scale high-frequency noise. Simulations with filtering only

suggest that treating the spatial filter as an implicit SGS model might be a good

alternative. To our best knowledge, Lighthill’s acoustic analogy was applied to a

reasonably high Reynolds number jet for the first time in this study. A database

greater than 1 Terabytes (TB) in size was post-processed using 1160 processors in

parallel on a modern supercomputing platform for this purpose. It is expected that
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the current CAA methodology will yield better jet noise predictions when improved

SGS models for both turbulence and high-frequency noise are incorporated into the

LES code and when the computing technology reaches a level where including the

jet nozzle geometry in the simulations will not be so computationally prohibitive.
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1. INTRODUCTION

1.1 Motivation

Jet noise remains as one of the most complicated and difficult problems in aeroa-

coustics because the details of noise generation mechanisms by the complex turbu-

lence phenomena in a jet are still not well understood. Thus, there is a need for more

research that will lead to improved jet noise prediction methodologies and further

understanding of the jet noise generation mechanisms which will eventually aid in

the design process of aircraft engines with low jet noise emissions.

With the recent improvements in the processing speed of computers, the applica-

tion of Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) to jet

noise prediction methodologies is becoming more feasible. Although there has been

numerous experimental studies of jet noise to date, the experiments provide only a

limited amount of information and the ultimate understanding of jet noise genera-

tion mechanisms will most likely be possible through numerical simulations since the

computations can literally provide any type of information needed for the analysis

of jet noise generation mechanisms. The first DNS of a turbulent jet was done for a

Reynolds number 2,000, supersonic jet at Mach 1.92 by Freund et al. [1]. The com-

puted overall sound pressure levels were compared with experimental data and found

to be in good agreement with jets at similar convective Mach numbers. Freund [2]

also simulated a Reynolds number 3,600, Mach 0.9 turbulent jet using 25.6 million

grid points, matching the parameters of the experimental jet studied by Stromberg

et al. [3]. Excellent agreement with the experimental data was obtained for both the

mean flow field and the radiated sound. Such results clearly show the attractive-

ness of DNS to the jet noise problem. However, due to the wide range of length and

time scales present in turbulent flows, DNS is still restricted to low-Reynolds-number
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flows and relatively simple geometries. DNS of high-Reynolds-number jet flows of

practical interest would necessitate tremendous resolution requirements that are far

beyond the reach of the capability of even the fastest supercomputers available today.

Therefore, turbulence still has to be modelled in some way to do simulations for

problems of practical interest. LES, with lower computational cost, is an attrac-

tive alternative to DNS. In an LES, the large scales are directly resolved and the

effect of the small scales or the subgrid scales on the large scales are modelled. The

large scales are generally much more energetic than the small ones and are directly

affected by the boundary conditions. The small scales, however, are usually much

weaker and they tend to have more or less a universal character. Hence, it makes

sense to directly simulate the more energetic large scales and model the effect of

the small scales. LES methods are capable of simulating flows at higher Reynolds

numbers and many successful LES computations for different types of flows have

been performed to date. Since noise generation is an inherently unsteady process,

LES will probably be the most powerful computational tool to be used in jet noise

research in the foreseeable future since it is the only way, other than DNS, to ob-

tain time-accurate unsteady data. Although the application of Reynolds Averaged

Navier Stokes (RANS) methods to jet noise prediction is also subject of ongoing

research [4–8], RANS methods heavily rely on turbulence models to model all rel-

evant scales of turbulence. Moreover, such methods try to predict the noise using

the mean flow properties provided by a RANS solver. Since noise generation is a

multi-scale problem that involves a wide range of length and time scales, it appears

the success of RANS-based prediction methods will remain limited unless very good

turbulence models capable of accurately modelling a wide range of turbulence scales

are developed and implemented into existing RANS solvers.

It is now widely accepted among the jet noise research community that the low

frequency noise generated by the jet flow is associated with the large scale turbulent

motions with length scales on the order of the jet diameter, whereas the high fre-

quency noise is related to the finer scales of turbulence. Moreover, the large scales
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are known to be strongly affected by the jet nozzle geometry. So although LES

seems to be very suitable for directly computing the low frequency jet noise and a

portion of the higher frequencies, some ingenuity is still needed so as to estimate the

noise from the unresolved higher frequencies generated by the very fine turbulent

scales not resolved by the LES grid. Such an estimation necessitates subgrid-scale

noise models that will somehow extrapolate the information contained in the scales

well-resolved by the LES to predict the high frequency noise. Although there has

been some preliminary efforts in this area [9], [10], [11], [12], [13], a satisfactory SGS

noise model is yet to be developed.

At this point, it seems appropriate to give an overview of the application of LES

to jet noise prediction. Although the overview given here is not a comprehensive

list of all the jet noise LES computations done to date, it certainly includes a re-

view of the state-of-the-art computations that are believed to be the most successful

application of LES to jet noise prediction. One of the first attempts in using LES

as a tool for jet noise prediction was carried out by Mankbadi et al. [14]. They

employed a high-order numerical scheme to perform LES of a supersonic jet flow

to capture the time-dependent flow structure and applied Lighthill’s theory [15] to

calculate the far field noise. Lyrintzis and Mankbadi [16] used LES in combination

with Kirchhoff’s method for jet noise prediction. LES has been used together with

Kirchhoff’s method [17] for the noise prediction of a Mach 2.0 jet also by Gamet and

Estivalezes [18] as well as for a Mach 1.2 jet with Mach 0.2 coflow by Choi et al. [19]

with encouraging results obtained in both studies. Zhao et al. [20] did LES for a

Mach 0.9, Reynolds number 3,600 jet obtaining mean flow results that compared well

with Freund’s DNS and experimental data. Their overall sound pressure levels for

this test case were in good agreement with experiments as well. They also studied

the far field noise from a Mach 0.4, Reynolds number 5,000 jet. They compared

Kirchhoff’s method results with the directly computed sound and observed good

agreement. Morris et al. [21–25] simulated high speed round jet flows using the Non-

linear Disturbance Equations (NLDE). In their NLDE method, the instantaneous
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quantities are decomposed into a time-independent mean component, a large-scale

perturbation and a small-scale perturbation. The mean quantities are obtained us-

ing a traditional Reynolds Averaged Navier-Stokes (RANS) method. As in LES,

they resolved the large-scale fluctuations directly and used a subgrid-scale model for

the small-scale fluctuations in their unsteady calculations. They also analyzed the

noise from a supersonic elliptic jet in another study [26]. Chyczewski and Long [27]

conducted a supersonic rectangular jet flow simulation and also did far field noise

predictions with a Kirchhoff method. Boersma and Lele [28] did LES for a Mach 0.9

jet at Reynolds numbers of 3,600 and 36,000 without any noise predictions. Bogey et

al. [29] simulated a Reynolds number 65,000, Mach 0.9 jet using LES and obtained

very good mean flow results, turbulent intensities as well as sound levels and direc-

tivity. Constantinescu and Lele [30] did simulations for a Mach 0.9 jet at Reynolds

numbers of 3,600 and 72,000. They directly calculated the near field noise using

LES. Their mean flow parameters and turbulence statistics were in good agreement

with experimental data and results from other simulations. The peak of the near

field noise spectra was also captured accurately in their calculations. DeBonis and

Scott [31] simulated a Reynolds number 1.2 million, Mach 1.4 jet using 1.5 million

grid points but they did not do any noise predictions. Bodony and Lele [32] studied

a Mach 0.9, Reynolds number 72,000 jet using 5.9 million grid points in an LES

and experimented with the inlet conditions. They showed the important role of the

inlet conditions in the far field noise of the jet. More recently, Bogey and Bailly’s

LES [33] for a Mach 0.9 round jet at Reynolds number, ReD = 400, 000 using 12.5

and 16.6 million grid points produced mean flow and sound field results that are

in good agreement with the experimental measurements available in the literature.

They also studied the effect of the various inflow conditions on the jet flow field as

well as on the jet noise in another recent study [34]. Their study once again revealed

the importance of inflow conditions in jet noise LES. Moreover, they brought up the

issue of the effects of the eddy viscosity based Smagorinsky SGS model on the jet

noise in yet another recent study [35]. They showed that the high-frequency portion
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of the noise spectra was significantly suppressed by the eddy viscosity. The recent

jet noise computations of Bogey and Bailly [33], [34], [35] are perhaps the most suc-

cessful LES calculations done for reasonably high Reynolds number jets at the time

of this writing. In this study, we will repeat some of the test cases studied by Bogey

and Bailly [34], [35] and make comparisons with their results as part of the validation

of our CAA methodology.

In general, the LES results in the literature to date are encouraging and show

the potential promise of LES application to jet noise prediction. Except for the

studies of Choi et al. [19] and DeBonis and Scott [31] which are not well-resolved

LES calculations, and the recent studies of Bogey and Bailly [33], [34], [35], the

highest Reynolds numbers reached in the LES simulations so far are still below

those of practical interest. The cut-off frequency of the noise spectra in the LES

computations is dictated by the grid resolution, hence only a portion of the noise

spectra was computed in the LES computations to date. Moreover, none of the LES

studies in the literature so far have predicted the high-frequency noise associated with

the unresolved fine scales due to the lack of an SGS noise model. Well-resolved LES

calculations of jets at higher Reynolds numbers close enough to practical values of

interest would be very helpful for evaluating the suitability of LES to such problems

as well as for analyzing the broad-band noise spectrum and possibly looking into the

mechanisms of jet noise generation at such Reynolds numbers.

1.2 Objectives of the Present Study

With this motivation behind the current study given, we now present the two

main objectives of this research:

1. Development and validation of a versatile 3-D LES code for turbulent jet simu-

lations. A high-order accurate 3-D compressible LES code utilizing a robust dy-

namic subgrid-scale (SGS) model has been developed to simulate high speed jet

flows with high subsonic Mach numbers. Generalized curvilinear coordinates
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are used, so the code can be easily adapted for calculations in several appli-

cations with complicated geometries. Since the sound field is several orders of

magnitude smaller than the aerodynamic field, we make use of high-order ac-

curate non-dissipative compact schemes which satisfy the strict requirements

of CAA. Implicit spatial filtering is employed to remove the high-frequency

oscillations resulting from unresolved scales and mesh non-uniformities. Non-

reflecting boundary conditions are imposed on the boundaries of the domain

to let outgoing disturbances exit the domain without spurious reflection. A

sponge zone that is attached downstream of the physical domain damps out

the disturbances before they reach the outflow boundary. Initial simulations

were performed with the constant-coefficient Smagorinsky SGS model. How-

ever, the results were found to be sensitive to the choice of the Smagorinsky

constant. The latest version of the LES code has the dynamic SGS model im-

plemented. As will be shown in the results section, an LES with the dynamic

SGS model for a compressible round jet at Reynolds number 100,000 produced

mean flow results in excellent agreement with experimental observations. The

code also has the capability to turn off the SGS model and treat the spatial

filter as an implicit SGS model. This type of LES with filtering only, were also

done and the results were compared against the LES done with the dynamic

Smagorinsky SGS model. The compressible LES solver developed herein can

be further modified to study supersonic jets in the future.

2. Accurate prediction of the far field noise. Even though sound is generated by a

nonlinear process, the sound field itself is known to be linear and irrotational.

This implies that instead of solving the full nonlinear flow equations out in

the far field for sound propagation, one can use Lighthill’s acoustic analogy

[15] or surface integral acoustic methods such as Kirchhoff’s method [17] and

the Ffowcs Williams - Hawkings (FWH) method [36], [37]. In this study, we

couple the near field data directly provided by LES with Kirchhoff’s and Ffowcs

Williams - Hawkings methods as well as with Lighthill’s acoustic analogy for
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computing the noise propagation to the far field. Overall sound pressure levels

in the far field as well acoustic pressure spectra are presented. Results are also

compared with experimental as well as computational data available in the

literature.

It should be noted at this point that the Ffowcs Williams - Hawkings method

and Kirchhoff’s method cannot be used with incompressible CFD data. For low

speeds (i.e., incompressible flow) and a stationary impermeable surface, the Ffowcs

Williams - Hawkings equation reduces to Curle’s integral [38]. Since the LES code

developed in this study is a compressible solver, the flow field data provided by the

code are compatible with the standard Ffowcs Williams - Hawkings and Kirchhoff

formulations.

The compressible LES code and the integral acoustics codes developed in this

study form the core of a CAA methodology for jet noise prediction. Using these

tools, we will attempt state-of-the-art well-resolved LES computations for jet flows

with Reynolds numbers as high as 400,000. As will be shown in the results section,

the cut-off non-dimensional frequency (Strouhal number) in the subsequent noise

computations will be as high as 4.0. Such a cut-off frequency, to our best knowledge,

is greater than the cut-off frequencies captured in all other jet noise LES computa-

tions for similar Reynolds numbers available in the literature to date. It is expected

that the coupling of the present CAA methodology with a future SGS model for

high-frequency noise from unresolved scales will be a powerful jet noise prediction

tool.

1.3 Organization of the Thesis

This thesis is organized as follows. Governing equations as well as various nu-

merical techniques implemented in our LES code are described in Chapter 2. The

formulation of the surface integral acoustics methods are also given in this chapter.

Chapter 3 shows the results of 2-D planar mixing layer simulations that were carried
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out to test the various numerical algorithms prior to the 3-D jet simulations. Results

and discussion of the initial 3-D round jet simulations are presented in Chapter 4.

Chapter 5 includes the mean flow and aeroacoustics results of a Reynolds number

100,000 jet simulation performed with the dynamic Smagorinsky model. Chapter 6

compares the results of the Reynolds number 400,000 jet simulations done with and

without an explicit SGS model. It also provides a study of surface integral acous-

tics methods and compares Kirchhoff’s method and the Ffowcs Williams - Hawkings

method results for various control surfaces surrounding the jet flow. Chapter 7

gives a description of Lighthill’s acoustic analogy and presents the details of the far

field noise computations using Lighthill’s acoustic analogy. Comparison of Lighthill’s

acoustic analogy results with the results obtained using the Ffowcs Williams - Hawk-

ings method as well as with some experimental far field noise spectra are also made

in this chapter. Concluding remarks as well as future work proposals are given in

Chapter 8.

Parts of this work were published as conference or journal papers listed as Ref-

erences [39–43].
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2. SIMULATION TECHNIQUES

2.1 Governing Equations

Large Eddy Simulation (LES) can be thought of as a compromise between Di-

rect Numerical Simulation (DNS) and the Reynolds Averaged Navier-Stokes (RANS)

equations. In a DNS, all the relevant scales of turbulence have to be directly com-

puted whereas in a RANS calculation, all the relevant scales of turbulence need to be

modelled. In an LES, the flowfield is decomposed into a large-scale or resolved-scale

component (f) and a small-scale or subgrid-scale component (fsg),

f = f + fsg. (2.1)

The large-scale component is obtained by filtering the entire domain using a grid

filter function, G as follows

f(~x) =

∫

V

G(~x, ~x
′

,∆)f(~x
′

) d~x
′

. (2.2)

The filtering operation removes the small-scale or the subgrid-scale turbulence from

the Navier-Stokes equations. The resulting governing equations are then solved

directly for the large-scale turbulent motions while the subgrid-scales are computed

using a subgrid-scale model, such as the classical Smagorinsky model [44] or the

more sophisticated dynamic Smagorinsky models proposed by Germano et al. [45]

and Moin et al. [46].

For compressible flows, the large-scale component is written in terms of a Favre-

filtered variable

f̃ =
ρf

ρ
. (2.3)
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The Favre-filtered unsteady, compressible, non-dimensionalized Navier-Stokes equa-

tions formulated in conservative form are solved in this study. The dimensional

variables are non-dimensionalized as follows

ρ =
ρ∗

ρr

ui =
ui

∗

Ur

p =
p∗

ρrUr
2 t =

t∗Ur

Lr

xi =
xi

∗

Lr

. (2.4)

The continuity equation is expressed as

∂ρ

∂t
+
∂ρũi

∂xi

= 0. (2.5)

The momentum equation is expressed as

∂ρũi

∂t
+
∂ρũiũj

∂xj

+
∂p

∂xi

−
∂

∂xj

(Ψij − τij) = 0, (2.6)

where the resolved shear stress tensor is given by

Ψij =
2µ̃

Re

(
S̃ij −

1

3
S̃kkδij

)
, (2.7)

with the Favre-filtered strain rate tensor defined as

S̃ij =
1

2

(
∂ũj

∂xi

+
∂ũi

∂xj

)
. (2.8)

The subgrid-scale stress tensor is given by

τij = ρ(ũiuj − ũiũj), (2.9)

and is modelled as

τij = −2Csgsρ∆
2S̃M

(
S̃ij −

1

3
S̃kkδij

)
+

2

3
CIρ∆

2S̃2
Mδij, (2.10)

where

S̃M =
(
2S̃ijS̃ij

)1/2
, (2.11)

and Csgs, CI are the model coefficients, and ∆ is the filter width or the eddy viscosity

length scale. In the subgrid-scale stress equation, the first term on the right hand

side is the original incompressible term in Smagorinsky’s model [44], and the second

term is the compressible correction proposed by Yoshizawa [47].
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Finally, the energy equation is expressed as

∂et

∂t
+
∂ũi(et + p)

∂xi

−
∂

∂xi

ũj(Ψij − τij) +
∂

∂xi

(qi +Qi) = 0, (2.12)

where the total energy is defined as

et =
1

2
ρũiũi +

p

γ − 1
. (2.13)

The resolved heat flux is

qi = −

[
µ̃

(γ − 1)Mr
2RePr

]
∂T̃

∂xi

. (2.14)

The subgrid-scale heat flux is given by

Qi = ρ(ũiT − ũiT̃ ), (2.15)

and is modelled as

Qi =
−Csgsρ∆

2S̃M

Prt

∂T̃

∂xi

. (2.16)

The ideal gas relation

p =
ρT̃

γMr
2 , (2.17)

and Sutherland’s law for the molecular viscosity, µ̃

µ̃

µr

=

(
T̃

Tr

)3/2
Tr + S

T̃ + S
(2.18)

are also used in these equations with the Sutherland constant, S chosen as 110K

while the reference temperature, Tr and reference viscosity, µr are chosen as the jet

centerline temperature and viscosity, respectively.

The three coefficients for the subgrid-scale models are Csgs, CI and the turbulent

Prandtl number, Prt. In the standard Smagorinsky model with compressibility

corrections, these coefficients are set to some constants based on previous studies.

It is also possible to represent these coefficients as functions of space and time, and

compute them dynamically as part of the flowfield simulation [45,46].

Both the standard constant-coefficient Smagorinsky [44] as well as the dynamic

Smagorinsky model for compressible flows proposed by Moin et al. [46] have been
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implemented into the LES code. The main idea in the dynamic model is to compute

the model coefficients as functions of space and time by making use of the informa-

tion contained within the smallest resolved scales of motion. The coefficient Csgs is

evaluated using the following relation

Csgs = −
(Lij −

1
3
Lkk)Mij

2MijMij

, (2.19)

where

Lij = ρ̂ũiũj −
1

ρ̂
ρ̂ũiρ̂ũj, (2.20)

Mij = ρ̂ ̂̃SM

(
∆̂/∆

)2
(
̂̃Sij −

1

3
̂̃Skkδij

)
− N̂ij, (2.21)

Nij = ρS̃M

(
S̃ij −

1

3
S̃kkδij

)
, (2.22)

and ̂ represents the test filtering operation.

For the dynamic model, a fifteen-point explicit filter developed by Bogey and

Bailly [48] is used as the test filter. Details of this test filter are given in section

2.2.3. The ratio of the test filter width to the grid spacing, (∆̂/∆) is taken as 2.

The usual practice in LES calculations is to average certain dynamically computed

quantities over statistically homogeneous directions and then use these averaged

quantities to compute the model coefficients. This is an ad hoc procedure that is

used to remove very sharp fluctuations in the dynamic model coefficients and to

stabilize the model. Obviously, such an approach is not useful for turbulent flows

for which there is no homogeneous direction. In our implementation, the dynami-

cally computed model coefficients are locally averaged in space using a second-order

three-point filter along all spatial directions in order to avoid the sharp fluctuations

in the model coefficient. No negative model coefficients are allowed. The upper limit

for the model coefficients is set to 0.5. This procedure works reasonably well for the

jet flows we are studying. The LES code which dynamically computes the Smagorin-

sky constant requires approximately 50% more computing time relative to the LES

code which employs the constant-coefficient SGS model. Dynamic evaluation of the

compressibility correction coefficient and the turbulent Prandtl number require test
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filtering of some additional quantities. To keep the additional cost of the dynamic

model at an acceptable level, the compressibility correction coefficient, CI and the

turbulent Prandtl number, Prt are not computed dynamically in this study and are

set to constant values instead.

In order to do direct numerical simulations using these Favre-filtered equations,

all spatially filtered variables can be replaced by their unfiltered forms and the

subgrid-scale stress tensor and the subgrid-scale heat flux terms are simply set to

zero.

The equations given so far are formulated in Cartesian coordinates. For problems

involving complex geometries, the form of the governing equations in generalized

curvilinear coordinates should be used. Extension of the equations from Cartesian

coordinates to generalized curvilinear coordinates can be expressed as

1

J

∂Q

∂t
+

∂

∂ξ

(
F − Fv

J

)
+

∂

∂η

(
G − Gv

J

)
+

∂

∂ζ

(
H − Hv

J

)
= 0, (2.23)

where t is the time, ξ, η, and ζ are the generalized curvilinear coordinates of the

computational space, and J is the Jacobian of the coordinate transformation from

the physical domain to the computational domain and can evaluated as follows

J =
1

xξ

(
yηzζ − yζzη

)
− xη

(
yξzζ − yζzξ

)
+ xζ

(
yξzη − yηzξ

) . (2.24)

Q is the vector of conservative flow variables, F, G, and H are the inviscid flux

vectors, Fv, Gv, and Hv are the viscous flux vectors defined as follows

Q =




ρ

ρũ

ρṽ

ρw̃

et




F =




ρŨ

ρũŨ + ξxp

ρṽŨ + ξyp

ρw̃Ũ + ξzp

(et + p)Ũ




G =




ρṼ

ρũṼ + ηxp

ρṽṼ + ηyp

ρw̃Ṽ + ηzp

(et + p)Ṽ




H =




ρW̃

ρũW̃ + ζxp

ρṽW̃ + ζyp

ρw̃W̃ + ζzp

(et + p)W̃




,

(2.25)
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Fv =




Fv1

Fv2

Fv3

Fv4

Fv5




Gv =




Gv1

Gv2

Gv3

Gv4

Gv5




Hv =




Hv1

Hv2

Hv3

Hv4

Hv5




, (2.26)




Fv1

Fv2

Fv3

Fv4

Fv5




=




0

ξx(Ψxx − τxx) + ξy(Ψxy − τxy) + ξz(Ψxz − τxz)

ξx(Ψxy − τxy) + ξy(Ψyy − τyy) + ξz(Ψyz − τyz)

ξx(Ψxz − τxz) + ξy(Ψyz − τyz) + ξz(Ψzz − τzz)

ũFv2 + ṽFv3 + w̃Fv4 − ξx(qx +Qx) − ξy(qy +Qy) − ξz(qz +Qz)




,

(2.27)




Gv1

Gv2

Gv3

Gv4

Gv5




=




0

ηx(Ψxx − τxx) + ηy(Ψxy − τxy) + ηz(Ψxz − τxz)

ηx(Ψxy − τxy) + ηy(Ψyy − τyy) + ηz(Ψyz − τyz)

ηx(Ψxz − τxz) + ηy(Ψyz − τyz) + ηz(Ψzz − τzz)

ũGv2 + ṽGv3 + w̃Gv4 − ηx(qx +Qx) − ηy(qy +Qy) − ηz(qz +Qz)




,

(2.28)




Hv1

Hv2

Hv3

Hv4

Hv5




=




0

ζx(Ψxx − τxx) + ζy(Ψxy − τxy) + ζz(Ψxz − τxz)

ζx(Ψxy − τxy) + ζy(Ψyy − τyy) + ζz(Ψyz − τyz)

ζx(Ψxz − τxz) + ζy(Ψyz − τyz) + ζz(Ψzz − τzz)

ũHv2 + ṽHv3 + w̃Hv4 − ζx(qx +Qx) − ζy(qy +Qy) − ζz(qz +Qz)




,

(2.29)

where ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, ζz are the transformation metrics. Since the gov-

erning equations written in strong-conservation form are used in this study, we pay

special attention to the evaluation of metrics. In order to ensure metric cancella-

tion on general 3-D curvilinear grids when high-order spatial discretization schemes
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are employed, we use the following “conservative” form of evaluating the metric

expressions [49]

ξx/J =
(
yηz
)

ζ
−
(
yζz
)

η
,

ηx/J =
(
yζz
)

ξ
−
(
yξz
)

ζ
, (2.30)

ζx/J =
(
yξz
)

η
−
(
yηz
)

ξ
,

ξy/J =
(
zηx
)

ζ
−
(
zζx
)

η
,

ηy/J =
(
zζx
)

ξ
−
(
zξx
)

ζ
, (2.31)

ζy/J =
(
zξx
)

η
−
(
zηx
)

ξ
,

ξz/J =
(
xηy
)

ζ
−
(
xζy
)

η
,

ηz/J =
(
xζy
)

ξ
−
(
xξy
)

ζ
, (2.32)

ζz/J =
(
xξy
)

η
−
(
xηy
)

ξ
.

Ũ , Ṽ , W̃ are given by

Ũ = ξxũ+ ξyṽ + ξzw̃, (2.33)

Ṽ = ηxũ+ ηyṽ + ηzw̃, (2.34)

W̃ = ζxũ+ ζyṽ + ζzw̃. (2.35)

The grid filter width, ∆ is taken as

∆ =

(
1

J

)1/3

. (2.36)

2.2 Numerical Methods

In this section, the numerical methods that are used for spatial and temporal

discretization of the governing equations as well as the boundary conditions and

implicit spatial filtering techniques will be introduced.
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2.2.1 Spatial Discretization

We first transform a given non-uniformly spaced curvilinear computational grid

in the physical space to a uniform grid in the computational space and solve the

discretized governing equations on the uniform grid. To compute the spatial deriva-

tives at interior grid points away from the boundaries, we employ the following

non-dissipative sixth-order compact scheme of Lele [50]

1

3
f ′

i−1 + f ′
i +

1

3
f ′

i+1 =
7

9∆ξ

(
fi+1 − fi−1

)
+

1

36∆ξ

(
fi+2 − fi−2

)
, (2.37)

where f
′

i is the approximation of the first derivative of f at point i along the ξ

direction, fi denotes the value of f at grid point i, and ∆ξ is the uniform grid

spacing in the ξ direction. For the left boundary at i = 1 and the right boundary

at i = N , we apply the following third-order one-sided compact scheme equations,

respectively

f ′
1 + 2f ′

2 =
1

2∆ξ

(
−5f1 + 4f2 + f3

)
, (2.38)

f ′
N + 2f ′

N−1 =
1

2∆ξ

(
5fN − 4fN−1 − fN−2

)
. (2.39)

For the points at i = 2 and i = N − 1 next to the boundaries, we use the following

fourth-order central compact scheme formulations, respectively

1

4
f ′

1 + f ′
2 +

1

4
f ′

3 =
3

4∆ξ

(
f3 − f1

)
, (2.40)

1

4
f ′

N−2 + f ′
N−1 +

1

4
f ′

N =
3

4∆ξ

(
fN − fN−2

)
. (2.41)

2.2.2 Spatial Filtering

Spatial filtering is sometimes used as a means of suppressing unwanted numerical

instabilities that can arise from the boundary conditions, unresolved scales and mesh

non-uniformities. In our study, we considered two different filters. We initially used

the following fourth-order compact filter developed by Lele [50]

α2f i−2 + α1f i−1 + f i + α1f i+1 + α2f i+2 = a1fi + a2(fi+1 + fi−1)

+a3(fi+2 + fi−2) + a4(fi+3 + fi−3), (2.42)
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where fi and f i represent the solution variable and the spatially filtered solution

variable at point i, respectively and the coefficients are given by

α1 = 0.652247 α2 = 0.170293,

a1 =
2 + 3α1

4
a2 =

9 + 16α1 + 10α2

32
, (2.43)

a3 =
α1 + 4α2

8
a4 =

6α2 − 1

32
.

The application of this filter results in a penta-diagonal system of equations. The

filter transfer function of this filter is plotted in figure 2.1. It was determined by

Zhao [51] that filtering at and near the boundaries is not necessary and therefore,

this filter is used on grid points i = 5 through i = N−4 where N is the total number

of grid points along the grid line.

The second filter we considered is the following sixth-order tri-diagonal filter used

by Visbal and Gaitonde [49]

αff i−1 + f i + αff i+1 =
3∑

n=0

an

2
(fi+n + fi−n) , (2.44)

where

a0 =
11

16
+

5αf

8
a1 =

15

32
+

17αf

16
a2 =

−3

16
+

3αf

8
a3 =

1

32
−
αf

16
. (2.45)

The parameter αf must satisfy the inequality −0.5 < αf < 0.5. A less dissipative

filter is obtained with higher values of αf within the given range. With αf = 0.5,

there is no filtering effect. This filter was used in various simulations with αf set to

values of 0.49, 0.47, and 0.45. Filter transfer functions of this filter for these three

αf values are shown in figure 2.1. Since this filter has a 7-point right-hand side

stencil, it obviously cannot be used at near-boundary points. Instead, the following

sixth-order equation with a one-sided right-hand side stencil is used at grid points

near the left boundary point i = 1 [49]

αff i−1 + f i + αff i+1 =
7∑

n=1

an,ifn i = 2, 3, (2.46)
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with

a1,2 =
1

64
+

31αf

32
a2,2 =

29

32
+

3αf

16
a3,2 =

15

64
+

17αf

32
,

a4,2 =
−5

16
+

5αf

8
a5,2 =

15

64
−

15αf

32
a6,2 =

−3

32
+

3αf

16
, (2.47)

a7,2 =
1

64
−
αf

32
,

and

a1,3 =
−1

64
+
αf

32
a2,3 =

3

32
+

13αf

16
a3,3 =

49

64
+

15αf

32
,

a4,3 =
5

16
+

3αf

8
a5,3 =

−15

64
+

15αf

32
a6,3 =

3

32
−

3αf

16
, (2.48)

a7,3 =
−1

64
+
αf

32
.

For the points near the right boundary point i = N , we apply a similar formulation

αff i−1 + f i + αff i+1 =
6∑

n=0

aN−n,ifN−n i = N − 2, N − 1, (2.49)

where

aN−n,i = an+1,N−i+1 i = N − 2, N − 1 n = 0, 6. (2.50)

The boundary points, i = 1 and i = N are left unfiltered.

The spatial filtering operation is carried out in the uniformly spaced computa-

tional domain. The conservative flow variables are filtered in all spatial directions at

the end of every time step. In DNS calculations, filtering is typically used to main-

tain numerical stability. The filter eliminates all the scales that cannot be resolved

by the finite difference scheme. Hence, in LES calculations, the filter is treated as

the grid filter.

2.2.3 Test Filtering

During the dynamic computation of the subgrid-scale model coefficients, test

filtering is needed in order to extract the necessary information contained within the
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smallest resolved scales of motion. For test filtering, the following 15-point explicit

filter developed by Bogey and Bailly [48] is employed

f̂i =
7∑

n=0

dn(fi−n + fi+n), (2.51)

where fi and f̂i represent the quantity and the test filtered quantity at point i,

respectively and the coefficients dn are given by

d0 = 0.25 d1 = 0.30834723 d2 = 0,

d3 = −0.07876835 d4 = 0 d5 = 0.02617123, (2.52)

d6 = 0 d7 = −0.00575011.

The filter transfer function of this filter is shown in figure 2.1. The test filtering

operation is carried out in the uniformly spaced computational domain.

2.2.4 Time Integration

The standard fourth-order explicit Runge-Kutta scheme is used for time advance-

ment. The governing equations can be expressed in the following form

∂q

∂t
= RHS(q; t), (2.53)

where q is the vector of the conservative variables. Following Mitchell et al. [52], the

first step of the Runge-Kutta time advancement scheme is an Euler predictor

q
′

= RHS(qn; tn)

q̃ = qn +
∆t

2
q

′

(2.54)

q̂ = qn +
∆t

6
q

′

,

followed by an Euler corrector

q
′

= RHS

(
q̃; tn +

∆t

2

)



20

q̃ = qn +
∆t

2
q

′

(2.55)

q̂ = q̂ +
∆t

3
q

′

,

followed by a leapfrog predictor

q
′

= RHS

(
q̃; tn +

∆t

2

)

q̃ = qn + ∆tq
′

(2.56)

q̂ = q̂ +
∆t

3
q

′

,

and concluded by a Milne corrector as follows

q
′

= RHS(q̃; tn + ∆t)

qn+1 = q̂ +
∆t

6
q

′

. (2.57)

This time integration scheme requires 2 temporary arrays, q̃, q̂ and the solution

vector at time step n, qn to be stored.

2.2.5 Boundary Conditions and Inflow Forcing

Several boundary conditions were used throughout the course of this study. We

initially employed Thompson’s non-reflecting boundary conditions [53, 54] on all

boundaries of the domain except for the inflow boundary. The form of Thompson’s

non-reflecting boundary conditions in curvilinear coordinates that were formulated

by Jiang et al. [55] were used in the Reynolds number 3, 600 jet and and some of the

Reynolds number 36, 000 jet calculations. However, during our 3-D turbulent round

jet simulations at a Reynolds number of 36, 000, we discovered that Thompson’s

boundary conditions actually did not provide the correct entrainment flow physics

on the boundaries of a Cartesian grid. The ambient fluid that is entrained by a round

jet should be coming in radially towards the jet centerline along the boundaries of the

Cartesian grid. However, it was found that with Thompson’s boundary conditions,

the entrained fluid came in at almost normal angles pretty much everywhere along



21

the boundaries except at the corners. Hence, we decided to abandon Thompson’s

boundary conditions completely and switch to the boundary conditions of Tam and

Dong [56] instead. The original two-dimensional boundary conditions of Tam and

Dong were recently extended to 3-D by Bogey and Bailly [57]. The following ra-

diation boundary conditions formulated in spherical coordinates are applied on the

lateral boundaries of the computational domain illustrated in figure 2.2

1

Vg

∂

∂t




ρ

u

v

w

p




+

(
∂

∂r
+

1

r

)




ρ− ρ̄

u− ū

v − v̄

w − w̄

p− p̄




= 0, (2.58)

where ρ, u, v, w, p are the local primitive flow variables on the boundary, ρ̄, ū, v̄,

w̄, p̄ are the local mean flow properties, Vg is the so-called acoustic group velocity

defined as

Vg = (ū + c̄) · er = ū · er +
√
c̄2 − (ū · eθ)2 − (ū · eφ)2, (2.59)

c̄ is the local mean sound velocity vector and |c̄| = c̄. er, eθ, eφ respectively denote

the unit vectors in r, θ and φ directions of the spherical coordinate system shown in

figure 2.3. These unit vectors can be expressed in terms of Cartesian coordinates as

er = (sin θ cosφ, sin θ sinφ, cos θ),

eθ = (cos θ cosφ, cos θ sinφ,− sin θ), (2.60)

eφ = (− sinφ, cosφ, 0).

The acoustic group velocity is actually the same as the wave propagation speed, and

is equal to the projection of the vector sum of the local mean sound velocity and local

mean flow velocity onto the sound propagation direction. It is assumed that in the

far field, the outgoing acoustic disturbances are propagating in the radial direction

relative to the acoustic source.
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The local mean flow variables as well as their spatial derivatives are calculated

during the simulation. The position vector, r is computed as

r =
√

(x− xsource)2 + (y − ysource)2 + (z − zsource)2, (2.61)

where x, y, z are the coordinates of the boundary point, and xsource, ysource, zsource are

the coordinates of the acoustic source location. In jet flow computations, the source

location is usually chosen as the end of the potential core of the jet. The deriva-

tive along the r direction is expressed in terms of the derivatives in the Cartesian

coordinate system as follows

∂

∂r
= ∇ · er = sin θ cosφ

∂

∂x
+ sin θ sinφ

∂

∂y
+ cos θ

∂

∂z
, (2.62)

where ∇ is the gradient operator in the Cartesian coordinate system.

Tam and Dong’s radiation boundary conditions are formulated for boundaries to

which only acoustic disturbances are reaching. The lateral boundaries of figure 2.2

are therefore suitable for the application of these boundary conditions. However,

radiation boundary conditions cannot be applied on the outflow boundary of figure

2.2 since there are entropy and vorticity waves in addition to the acoustic waves

crossing this boundary. Instead, Tam and Dong’s outflow boundary conditions are

imposed on the outflow boundary as follows

∂ρ

∂t
+ ū · ∇(ρ− ρ̄) =

1

c̄2

(
∂p

∂t
+ ū · ∇(p− p̄)

)
,

∂u

∂t
+ ū · ∇(u− ū) = −

1

ρ̄

∂(p− p̄)

∂x
,

∂v

∂t
+ ū · ∇(v − v̄) = −

1

ρ̄

∂(p− p̄)

∂y
, (2.63)

∂w

∂t
+ ū · ∇(w − w̄) = −

1

ρ̄

∂(p− p̄)

∂z
,

1

Vg

∂p

∂t
+
∂(p− p̄)

∂r
+

(p− p̄)

r
= 0.

Since the actual nozzle geometry is not included in the present calculations,

we initially thought that the inflow boundary should be responsible for generating
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disturbances that trigger the growth of instabilities in the flowfield in addition to

allowing the outgoing acoustic waves to leave the domain. For the inflow boundary

conditions, we initially applied a procedure based on characteristics [51]. In this

procedure, it should first be noted that the right-hand side of the Navier-Stokes

equations or the time derivative of the conservative variables, i.e.,

∂Q

∂t
= RHS, (2.64)

involves computing the spatial derivatives of the fluxes. Since compact finite differ-

ences are used, the flux derivatives are computed at all boundary points as well as

interior points. Now, consider the inflow boundary located at x = 0 in figure 2.2.

The +x direction corresponds to the streamwise direction. For all boundaries except

for the inflow boundary, the right hand sides are overwritten by the time derivatives

obtained by applying Thompson’s non-reflecting or Tam and Dong’s boundary con-

ditions. Then, all the points are time advanced. Using the new solution on the inflow

boundary, we estimate the amplitude of the outgoing acoustic wave that propagates

in the −x direction as follows

Λ5 = (pc − p̄) − ρ̄c̄(uc − ū), (2.65)

where pc and uc are the pressure and streamwise velocity on the inflow boundary,

respectively, that are obtained from the time integration. In the above equation,

p̄, ρ̄, ū, c̄ are the local mean values of pressure, density, streamwise velocity and

speed of sound, respectively. Once Λ5 is estimated, the incoming acoustic wave that

propagates in the +x direction is calculated from

Λ1 = Λ5 + 2ρ̄c̄(uf − ū), (2.66)

where uf is the forced streamwise velocity on the inflow boundary. Details on uf are

given in Chapter 4. Then, using Λ1 and Λ5, we calculate the pressure fluctuation on

the boundary as follows

p′ =
1

2
(Λ1 + Λ5). (2.67)
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Finally, the density fluctuation is computed using the amplitude of the entropy wave,

Λ2 and p′

ρ′ =
1

c̄2
(p′ − Λ2). (2.68)

The amplitude of the entropy wave Λ2 is usually set to zero. p′ and ρ′ are then added

to p̄ and ρ̄ to get the pressure and density on the inflow boundary.

Velocity fluctuations on the two transverse velocity components can also be im-

posed. These fluctuations determine the amplitude of the two incoming vorticity

waves

Λ3 = ρ̄c̄v′, (2.69)

Λ4 = ρ̄c̄w′, (2.70)

where v′, w′ are the velocity fluctuations applied on the mean y and z velocities,

respectively. Details on v′ and w′ are given in Chapter 4. For jet flow computations,

the mean transverse velocities on the inflow boundary are set to zero.

Simulations of Reynolds number 3, 600 and 36, 000 jets were done using these

inflow boundary conditions. During these simulations, it was realized that the im-

plementation of the inflow boundary conditions in the above described form were

resulting in reflections of the upstream propagating acoustic waves from the inflow

boundary. Furthermore, the forcing procedure applied on the inflow boundary was

found to generate some artificial noise which contaminated the natural sound field

of the jet. Acoustic wave reflections as well as excessive artificial noise were not

acceptable and consequently the inflow boundary conditions described above were

completely abandoned. In the new inflow boundary implementation, we decided to

apply Tam and Dong’s 3-D radiation boundary conditions [57] on the inflow bound-

ary of the computational domain as illustrated in figure 2.4 which summarizes how

the boundary conditions are handled in the latest version of the LES code. In this

figure, vorticity magnitude contours are shown within the jet while divergence of

velocity contours are shown in the outer part of the computational domain. The

new implementation of the inflow boundary conditions was found to be truly non-
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reflecting since the new inflow boundary conditions let the outgoing acoustic waves

exit the inflow boundary without spurious reflection back into the domain.

We also decided to modify the inflow forcing technique since the previous inflow

forcing procedure was found to be generating some spurious noise. In the new inflow

forcing, randomized velocity perturbations in the form of a vortex ring are added

into the jet shear layers at a short distance downstream of the inflow boundary in

order to excite the 3-D instabilities in the jet and cause the potential core of the

jet to break up at a reasonable distance downstream of the inflow boundary. This

forcing procedure has been adapted from Bogey et al. [58]. A vortex ring whose

radius is equal to the initial jet radius, ro is considered in this type of forcing. The

vortex ring has a mean axial and radial velocity distribution which can be computed

using the analytical expressions given in Bogey et al. [58], but it has no azimuthal

velocity. The mean axial and radial velocity components of the vortex ring of radius

of ro are respectively given as

Uxring
= 2

ro

r

r − ro

∆o

exp

(
− ln(2)

(
∆(x, y)

∆o

)2
)
, (2.71)

Urring
= −2

ro

r

x− xo

∆o

exp

(
− ln(2)

(
∆(x, y)

∆o

)2
)
, (2.72)

for r =
√
y2 + z2 6= 0, where ∆o is the minimum grid spacing in the jet shear layer,

∆(x, y)2 = (x − xo)
2 + (r − ro)

2, xo is the streamwise location of the center of the

vortex ring and is usually chosen as xo = ro. There are certain number of azimuthal

modes involved in the forcing. The amplitude and phase of each forcing mode are

randomly picked within a specified range of values by using a random number gen-

erator. The parameter α controls the strength of the perturbations. Streamwise and

radial velocity perturbations are added onto the local velocity components as follows

vx = vx + αUxring
Uo

nmodes∑

n=0

εn cos(nΘ + ϕn), (2.73)

vr = vr + αUrring
Uo

nmodes∑

n=0

εn cos(nΘ + ϕn), (2.74)
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where Θ = arctan (y/z), εn and ϕn are randomly generated numbers that satisfy

−1 < εn < 1 and 0 < ϕn < 2π, respectively. Due to the circular nature of the

vortex ring, the velocity perturbations given above are formulated in cylindrical

coordinates. However, one can easily convert these fluctuations to the Cartesian

coordinate system. The total number of forcing modes, nmodes + 1, is usually chosen

as 10 or more. Combining the basic vortex ring’s mean velocity distribution with the

azimuthal forcing modes produces randomized axial and radial velocity disturbances

in the form of a vortex ring which are added into the initial jet shear layers. The

reader is referred to Reference [58] for more details. The vortex ring forcing described

here is approximately solenoidal and therefore quiet. The simulations of Reynolds

number 100, 000 and 400, 000 jets were performed using the new inflow boundary

conditions and the new inflow forcing technique. Details of the number of modes

and the α parameter used in these simulations are given in Chapters 5 and 6.

2.2.6 Sponge Zone

It is known that numerical reflections usually arise from the outflow boundaries

which strong vortices convecting downstream must pass through in order to leave

the domain. Such unwanted reflections, if left untreated, will propagate upstream

and contaminate the acoustic field. They can even cause the computations to blow

up. To avoid such problems, we use the sponge zone method proposed by Colo-

nius et al. [59]. This approach has been shown to be quite effective in minimizing

reflections from the outflow boundary. In this method, a sponge zone is attached

downstream of the physical domain as shown in figures 2.2 and 2.4. We apply grid

stretching together with explicit filtering or artificial damping along the streamwise

direction in this exit zone to dissipate the vortices present in the flowfield before

they hit the outflow boundary. In our initial simulations, we employed second-order

filtering and used Thompson’s non-reflecting boundary conditions without any mod-

ification at the end of the sponge zone. Use of the second-order explicit filtering
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together with Thompson’s boundary conditions were observed to be stable. How-

ever, when we implemented Tam and Dong’s outflow boundary conditions and kept

the same second-order explicit filtering in the sponge zone, numerical instabilities

were observed on the outflow boundary. These instabilities are believed to be due

to the interaction of the second-order explicit filtering and Tam and Dong’s outflow

boundary conditions. Therefore, we decided to switch to artificial damping instead

of explicit filtering in the sponge zone. The combination of artificial damping and

Tam and Dong’s outflow boundary conditions was found to be stable and did not

cause any further problems. The turbulent flow field in the sponge zone is forced

towards a smooth solution through the use of a damping term which is added to the

right hand side of the governing equations as follows

∂Q

∂t
= RHS − χ(x)(Q − Qtarget). (2.75)

In the above equation,

χ(x) = χmax

(
x− xphy

xmax − xphy

)3

, (2.76)

where x is the streamwise location, xphy is the streamwise coordinate of the end of

the physical portion of the domain, xmax is the streamwise coordinate of the end

of the sponge zone, Q is the vector of conservative variables, Qtarget is the target

solution in the sponge zone, and χ(x) controls the strength of the damping term with

the value of χmax usually chosen around 1.0. In jet simulations, the target solution

is usually specified as the self-similar solution of an isothermal incompressible round

jet.

2.3 LES Code Parallelization

Both the compact scheme and the implicit spatial filter are non-local since they

require the solution of a linear system of equations along the grid lines. Conse-

quently, one needs all of the data points along a given grid line in order to compute

the derivatives and filter the solution along that spatial direction. Because of this
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requirement, the transposition strategy depicted in figure 2.5 was chosen for code

parallelization. Initially, the grid is partitioned along the z direction only as shown

in the top configuration and each block is assigned to a processor. In this configura-

tion, one can compute the derivatives and do filtering along the x and y directions

in each block independently from all other blocks. However, in order to apply the

compact scheme and the filter along the z direction, a data transposition is needed

for the re-alignment of the blocks as shown in the bottom configuration. Only then,

the processors can apply the compact scheme and the filter along the z direction.

Once the computations along the z direction are finished, then another transposition

back to the initial configuration has to be done in order to send the newly computed

information back to the original configuration for further use.

The Fortran 90 programming language has been used for code development. Op-

timized LAPACK (Linear Algebra Package) subroutines are employed to solve the

linear systems of equations which arise during the application of the compact differ-

encing scheme as well as the implicit spatial filter. As will be evident shortly, great

care has been taken to minimize cache misses and optimize the code performance

as much as possible. The conservative formulation of the governing Navier-Stokes

equations are chosen for discretization in order to minimize the number of spatial

differencing operations. In addition, advanced compiler optimization flags are used

during code compilation in order to further improve our code performance. The

standard MPI (Message Passing Interface) library routines have been used in the

code parallelization. The code has restarting capability, so a simulation can be run

in many stages.

To evaluate the performance of the latest version of our code, we did test runs on

a 470 × 160 × 160-node computational grid using 20, 40, 80, and 160 processors on

the Lemieux cluster at the Pittsburgh Supercomputing Center. Approximately 16

GB of memory was needed for the test runs on the given grid, hence we were unable

to test the code performance on fewer than 20 processors since the total amount of

memory available would be insufficient in such cases.
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We assumed a speedup value of 1 for the 20-processor run and then computed our

speedups relative to the 20-processor run. Figure 2.6 shows the parallel performance

of our code on Lemieux. As can be observed from the plot, the code scales very

well and super-linear speedups have been obtained when the code is run on 80 or

more processors. The code is memory intensive and each processor works on a

smaller set of memory as the number of partitions are increased. The excellent

performance is due to the fact that with more processors the problem data handled

by any one processor fits better in cache memory, so fewer cache misses happen and

each processor executes faster than the single processor could. These observations

provide us with the proof for the excellent performance of our LES code on the

Lemieux cluster.

We also did some test runs by increasing the grid size in proportion to the number

of processors. In other words, the overall grid size was adjusted as the number of

processors increased so that the memory per processor remained constant and every

processor did the same amount of work in all test runs. This test was performed

on an IBM-SP3 machine using 20, 40, 80 and 160 processors in parallel. Every

processor worked on 300,800 grid points during the test runs. We now define an

efficiency parameter (with respect to the 20-processor test run) as the run time with

20 processors divided by the run time with N processors. Figure 2.7 shows how the

efficiency varies as the number of processors increases. The efficiency is equal to 1

when the number of processors is equal to 20. Then, it starts to drop gradually as

the number of processors increases. As the number of processors reaches 160, we

get an efficiency of about 76% which is quite satisfactory. Hence, we see that the

parallel code has a good efficiency when it is run on a large number of processors.

2.4 Surface Integral Acoustics Methods

Far field noise computations are done by coupling the time accurate near field

flow field data provided by the LES code with surface integral acoustics methods
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[60], [61] such as Kirchhoff’s method and the Ffowcs Williams - Hawkings method.

A description of these methods will be given in this section.

2.4.1 Kirchhoff’s Method

In Kirchhoff’s method, it is assumed that the following linear, homogeneous wave

equation

1

c2∞

∂2p′

∂t2
−

∂2p′

∂xi∂xi

= 0, (2.77)

is valid for the acoustic pressure variable, p′, in the entire region outside of a closed

and bounded smooth surface, S.

For a stationary surface, Kirchhoff’s formula is the following integral representa-

tion of the solution to the linear, homogeneous wave equation

4πp′(~x, t) =

∫

S

1

r

[
1

c∞
ṗ′ cosϑ−

∂p′

∂n

]

ret

dS +

∫

S

[p′ cosϑ]ret

r2
dS. (2.78)

Here, (~x, t) are the observer coordinates and time, r is the distance from the source on

the surface to the observer, ϑ is the source emission angle such that cosϑ = r·n where

n is the control surface unit normal vector and r is the unit vector in the radiation

direction. The dot over a variable indicates a time derivative. The surface integrals

are evaluated over the control surface S, and subscript ret indicates evaluation of

the integrands at the emission (retarded) time, τ = t− r/c∞.

Since Kirchhoff’s method is based on the linear wave equation, it works well for

aeroacoustic predictions when the control surface is placed in a region of the flow

field where the linear wave equation is valid. However, this might not be possible for

some cases. Additional nonlinearities such as quadrupoles can be added outside the

control surface [62]. Kirchhoff’s method has also been applied for open surfaces [63]

and can be extended to include mean flow refraction effects [64].
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2.4.2 Ffowcs Williams - Hawkings Method

The Ffowcs Williams - Hawkings formulation for a stationary permeable control

surface, S is given as follows

p′(~x, t) = p′T (~x, t) + p′L(~x, t) + p′Q(~x, t), (2.79)

where

4πp′T (~x, t) =

∫

S

[
ρ∞U̇n

r

]

ret

dS, (2.80)

4πp′L(~x, t) =
1

c∞

∫

S

[
L̇r

r

]

ret

dS +

∫

S

[
Lr

r2

]

ret

dS, (2.81)

and

Ui =
ρui

ρ∞
, (2.82)

Li = p′δijnj + ρuiun. (2.83)

(~x, t) are the observer coordinates and time, r is the distance from the source on the

surface to the observer, subscript ∞ implies ambient conditions, and c∞ is the am-

bient sound speed. The dot over a variable indicates a time derivative, a subscript r

or n indicates a dot product of the vector with the unit vector in the radiation direc-

tion r or the unit vector in the surface normal direction n, respectively. The surface

integrals are over the control surface S, and the subscript ret indicates evaluation of

the integrands at the emission time, τ = t − r/c∞. The quadrupole noise pressure

p′Q(~x, t) denotes the quadrupole sources outside the control surface and consists of

a volume integral. This term has been neglected in this study.

The Ffowcs Williams - Hawkings formulation is based on the conservation laws of

fluid mechanics rather than the wave equation. Brentner and Farassat [65] showed

that if the quadrupole term is neglected outside the control surface, the Ffowcs

Williams - Hawkings solution is less sensitive than Kirchhoff’s method to the place-

ment of integration surface in the non-linear flow region. They also showed that the

Ffowcs Williams - Hawkings formulation is equivalent to the Kirchhoff formulation

when the integration surface is located in the linear wave propagation region.
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2.4.3 Numerical Implementation of Surface Integral Acoustics Methods

Since the LES code runs on generalized curvilinear grids, the control surface on

which time accurate flow data are gathered is divided into many 2-D quadrilateral

elements. The flow quantities needed by the surface integral methods are stored

at the quadrilateral element centers. There are 2 main stages involved in both

Kirchhoff’s method and the Ffowcs Williams - Hawkings method. In the first stage,

a pre-processor program reads in the flow variables gathered on the control surface

and computes the time derivatives of some quantities needed by these surface integral

acoustics methods. The 6th-order accurate compact scheme is applied along the

temporal direction in order to compute the time derivatives. For Kirchhoff’s method,

only the time derivative of acoustic pressure is needed. For the Ffowcs Williams -

Hawkings method, the time derivatives of Un , L1 , L2 , and L3 are needed (see the

Ffowcs Williams - Hawkings formulation for these quantities). The time derivatives

at every point in the time history are computed only once and stored in data files

along with other quantities of interest for the two methods. Stage 1 takes place only

once no matter how many observer points there are. The flow quantities that are

stored for Kirchhoff’s method are p′, ṗ′, ∂p′

∂n
, whereas the flow quantities that are

stored for the Ffowcs Williams - Hawkings method are ρ∞U̇n, L1, L2, L3, L̇1, L̇2, L̇3.

In the second stage, the data produced in stage 1 are read in and the surface

integrals are carried out to compute the far field noise. The surface integrals are

performed in a discrete sense by adding up the contributions from every quadrilateral

element on the surface. The run time of the second stage is almost the same for the

two surface integral acoustics methods. This is because all time derivatives have

already been computed in the first stage and stored along with other quantities

of interest which are directly needed in the surface integrals. The second stage

does the linear interpolation of the quantities produced in stage 1 to retarded times

depending on the distance between the source and the observer. It then divides or

multiplies the new values at the retarded times by some quantities that depend on



33

the observer location relative to the source (such as r or r2, etc.) and finally adds up

the contributions from all surface elements to calculate the acoustic pressure history.

The second stage is fully parallelized, hence the control surface is divided into

many partitions and the surface integrals are carried out in parallel. In the second

stage, the ratio of the memory needed for the Ffowcs Williams - Hawkings method

to that needed for Kirchhoff’s method is 7/3. The total run time of stage 2 depends

on the total number of observer points. Run times of the acoustics codes will be

given when aeroacoustics results are presented in Chapters 5, 6, and 7.
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3. 2-D MIXING LAYER SIMULATIONS

Our eventual aim in this work is to do turbulence simulations of fully turbulent three-

dimensional jets which are an important class of free-shear flows. Mixing layers

are another class of free-shear flows that are commonly studied. Before going to

full three-dimensional turbulent jet simulations, we decided to test our simulation

techniques in a two-dimensional free-shear flow. Therefore, we first examined the

planar mixing layer problem. Planar shear layers have been studied experimentally

by Wygnanski and Fiedler [66], Spencer and Jones [67] as well as Bell and Mehta

[68], and computationally by Rogers and Moser [69], Stanley and Sarkar [70], and

Bogey [71], among others. We did a DNS calculation for a mixing layer at a relatively

low Reynolds number, as well as a LES calculation for a mixing layer at a higher

Reynolds number and compared some of our results with available experimental and

computational results in the literature.

3.1 Test Case 1 - DNS at a Reynolds Number of 720

In the first 2-D test case, we will perform a DNS calculation for a mixing layer.

The following hyperbolic tangent inflow profile is given for the mean streamwise

velocity

ū(y) =
U1 + U2

2
+
U2 − U1

2
tanh

(
2y

δω(0)

)
, (3.1)

and for the mean transverse velocity, we simply take

v̄(y) = 0. (3.2)

U1 and U2 are the velocities of the low-speed and high-speed streams, respectively,

and δω(0) is the initial vorticity thickness, which is defined as

δω(0) =
U2 − U1

|∂U
∂y
|
max

. (3.3)
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The convection velocity is

Uc =
U1 + U2

2
= 0.375c∞, (3.4)

and the relative convective Mach number is

Mc =
U2 − U1

2c∞
= 0.125, (3.5)

where c∞ is the ambient speed of sound. The Reynolds number based on the initial

vorticity thickness and the velocity difference across the mixing layer is equal to

Re =
(U2 − U1)δω(0)

ν
= 720. (3.6)

This test case is the same as the one studied by Stanley and Sarkar [70]. The com-

putational grid used in our simulation is shown in figure 3.1. The domain extends to

about 350δω(0) in the streamwise x-direction and from −300δω(0) to 300δω(0) in the

transverse y-direction. The grid has 576 points along both directions. The minimum

grid spacing in the y-direction is about 0.16δω(0) around the centerline. Exponential

grid stretching is applied in the transverse direction such that the maximum spac-

ing around the upper and lower boundaries is about 3δω(0). In the x-direction, the

physical region extends up to about x = 200δω(0) and the region after x = 200δω(0)

is the sponge region. In the physical region, the grid spacing in the x-direction

is uniform and about 0.40δω(0). In the sponge region, the grid is stretched using

the grid-stretching function proposed by Colonius et al. [59]. The first 500 points

in the x-direction are in the physical region and the remaining 76 points form the

sponge region. In the simulation done by Stanley and Sarkar [70], a 375 × 99-node

grid was used with a domain size of about 143δω(0) in the x-direction and about

38δω(0) in the y-direction. They kept the grid spacing in the x-direction constant

at 0.38δω(0). Their minimum grid spacing in the y-direction was about 0.19δω(0)

around the centerline. They also applied stretching in the y-direction using the grid

stretching functions utilized by Colonius et al. [59] to form the sponge zone.



40

In order to simulate a naturally developing mixing layer, we apply the following

random perturbation on the transverse velocity on the inflow boundary

v(y) = εαUc exp

(
−

y2

∆y0
2

)
, (3.7)

where ε is a random number between −1 and 1, α = 0.0045, and ∆y0 is the minimum

grid spacing in the y-direction. This kind of random perturbation was used by

Bogey [71] to simulate a naturally developing mixing layer at a Reynolds number of

5, 333. We will also study the test case of Bogey [71] in the next part using LES

with the same random forcing method.

Figure 3.2 shows the instantaneous vorticity contours for the naturally developing

mixing layer. Occasional vortex pairing was observed in the domain at various

locations during the simulation. Unlike a mixing layer forced at discrete frequencies,

the position of the vortex pairing is not fixed at a certain location in a naturally

developing mixing layer.

After the initial transients exited the domain, the code was run for 35,000 time

steps and the flow statistics were gathered during this time interval. An acoustic

wave travelling at the ambient sound speed travels a distance equal to about 16 times

the domain length in the streamwise direction during this interval. Figure 3.3 plots

the scaled mean streamwise velocity profiles at five stations. The scaled velocity is

given by

f(ξ) =
Ū − Uc

U2 − U1

, (3.8)

where Ū is the time averaged streamwise velocity component, and

ξ =
y − ȳ(x)

δ(x)
, (3.9)

δ(x) = y0.9(x) − y0.1(x), (3.10)

ȳ(x) =
1

2
[y0.9(x) + y0.1(x)]. (3.11)

y0.1(x) is the y location where

U = U1 + 0.1(U2 − U1), (3.12)
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and, similarly, y0.9(x) is the y location where

U = U1 + 0.9(U2 − U1). (3.13)

Pope [72] shows that the following error-function

f(ξ) =
1

2
erf

(
ξ

0.5518

)
, (3.14)

is a good fit to the experimental data of Champagne et al. [73]. Hence, the error

function profile is also included in figure 3.3 for comparison. As can be seen from this

plot, the scaled velocity profiles show a good degree of self-similarity. The agreement

with the error-function is also very good.

Figure 3.4 shows how the vorticity thickness grows for the naturally developing

mixing layer. From the plot it can be seen that initially there is a region of slow

growth till about x = 50δω(0) and then there is a nearly linear growth downstream.

A similar observation was also reported by Stanley and Sarkar [70]. Shown also in

the plot is the linear fit to the data in the region for x > 50δω(0). The slope of the

line is about 0.050. Using this value, we can calculate the growth rate as follows

1

η

∂δω(x)

∂x
= 0.15, (3.15)

since

η =
U2 − U1

U2 + U1

=
1

3
. (3.16)

This value agrees well with the experimentally obtained growth rate of 0.16 observed

by Spencer and Jones [67] as well as the computational result of 0.15 by Stanley and

Sarkar [70].

Figures 3.5, 3.6, and 3.7 show the normalized Reynolds stress profiles at various

downstream locations. The normalized Reynolds stresses are defined as

σxx =
〈u

′

u
′

〉

(U2 − U1)2
σyy =

〈v
′

v
′

〉

(U2 − U1)2
σxy =

〈u
′

v
′

〉

(U2 − U1)2
, (3.17)

where 〈 〉 denotes time-averaging. The σxx and σyy profiles are observed to collapse

well in the far downstream region and hence exhibit self-similarity. The σxy profile
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also shows a similar trend; however, there seems be a noticeable difference between

the profiles at x = 160δω(0) and x = 190δω(0). The reason for this is unknown

but it is believed to be related to the statistical sample size. A bigger statistical

sample collected over a larger number of time steps would probably eliminate this

discrepancy. The peak values for σxx, σyy, and σxy in the far downstream region are

approximately 0.048, 0.078 and 0.012, respectively.

3.2 Test Case 2 - LES at a Reynolds Number of 5,333

In the second test case, we are doing an LES calculation for a mixing layer at

a higher Reynolds number. The Reynolds number based on the initial vorticity

thickness and the velocity difference across the layer is

Re =
(U2 − U1)δω(0)

ν
= 5, 333. (3.18)

The relative convective Mach number is

Mc =
U2 − U1

2c∞
= 0.074. (3.19)

The convection velocity is

Uc =
U1 + U2

2
= 0.222c∞, (3.20)

and

η =
U2 − U1

U2 + U1

=
1

3
. (3.21)

The hyperbolic tangent profile that was specified for the inflow velocity in the

first test case is also used here. We again simulate a naturally developing mixing

layer in this computation by adding random perturbations to the transverse velocity

component on the inflow profile. This test case is same as the one studied by Bogey

[71] using LES. The grid we used in this test case is similar to the one used in the

DNS test case and is depicted in figure 3.8. The grid extends to about 400δω(0)

in the streamwise x-direction and from −300δω(0) to 300δω(0) in the transverse y-

direction. The grid has 720 points along the streamwise direction and 576 points
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along the transverse direction. The minimum grid spacing in the y-direction is about

0.16δω(0) around the centerline. Again, exponential grid stretching is applied in the

transverse direction such that the maximum spacing around the upper and lower

boundaries is about 3δω(0). In the x-direction, the physical region extends up to

about x = 250δω(0). In the physical region, the grid spacing in the x-direction

is uniform and about 0.40δω(0). The first 625 points in the x-direction are in the

physical region and the remaining 95 points form the sponge region. For comparison,

the grid of Bogey [71] consists of 601× 281 points. His domain extends up to about

x = 350δω(0) in the streamwise direction and from y = −90δω(0) to y = 90δω(0)

in the transverse direction. His minimum grid spacing in the y-direction around

the centerline is 0.16δω(0). He also applied grid stretching toward the upper and

lower boundaries. In the x-direction, he kept the spacing constant at 0.32δω(0) until

x = 150δω(0) where the sponge zone starts. He used the last 100 points along the

x-direction form the sponge zone.

For subgrid-scale modelling in this simulation, we used the Smagorinsky model

with Csgs = 0.182 = 0.0324, CI = 0.00575 and the turbulent Prandtl number,

Prt = 0.9. Bogey [71] also used the Smagorinsky model with the same Csgs value

but he did not include the compressibility correction term. Since the convective

Mach number is very low in this test case, compressibility effects are not expected

to be significant in this simulation.

The instantaneous vorticity contours are shown in figure 3.9. As it has been

observed earlier in the low Reynolds number DNS, occasional vortex pairing also

happened at various locations in the domain during this simulation.

After the initial transients got out of the computational domain, we ran an ad-

ditional 50,000 time steps to obtain the statistical data. During this time interval,

an acoustic wave travelling at ambient sound speed travelled a distance that is equal

to about 17 times the domain length in the streamwise direction. The scaled mean

streamwise velocity profiles at five stations are plotted in figure 3.10. The velocity
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profiles are again observed to collapse well and there is good agreement with the

error function defined previously.

The vorticity thickness growth for the naturally developing mixing layer is shown

in figure 3.11. A linear fit to the data in the region for x > 60δω(0) is also plotted.

The slope of the line is about 0.053. Using this value, the growth rate is calculated

as

1

η

∂δω(x)

∂x
= 0.16, (3.22)

which is in good agreement with our DNS result in the first test case as well as some

other researchers’ results mentioned previously.

Finally, the Reynolds stress profiles at various downstream locations obtained

in this simulation are plotted in figures 3.12, 3.13, and 3.14. The peak values for

σxx, σyy, and σxy in the far downstream region are approximately 0.058, 0.090 and

0.017, respectively. The σxx and σyy profiles collapse well in the far downstream

region and exhibit self-similarity. The σxy profile shows a discrepancy similar to that

observed in the DNS calculation; there is a noticeable difference between the profiles

at x = 180δω(0) and x = 210δω(0).

Table 3.1 compares some of our results obtained in both test cases to available

experimental and computational data in the literature. From the comparison, we see

that the mixing layer growth rates obtained in our simulations compare well with

other results; however, the peak Reynolds stresses seem to be overpredicted com-

pared to experiments. A similar observation can be done with the two-dimensional

simulation results of Stanley and Sarkar [70] as well as those of Bogey [71]. The

inability of the 2-D simulations to predict Reynolds stresses accurately is not very

surprising since the energy dissipation mechanism in a 2-D simulation is not expected

to be the same as the case in a 3-D simulation or a physical experiment. In a 2-D

calculation, there is obviously no energy transfer to the third dimension. Further-

more, the 3-D features of a turbulent flow such as the 3-D breakdown of large scale

structures into fine scale turbulence and the vortex stretching mechanisms are also

absent in the 2-D calculations.
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In conclusion, it can be summarized that the 2-D simulations done in this study

were capable of getting the mean streamwise velocity profiles as well as the vortic-

ity thickness growth rates fairly accurately although the predicted peak Reynolds

stresses were inaccurate. One normally should not use 2-D turbulence simulation

results for a mixing layer problem if accurate prediction of the Reynolds stresses is

considered to be an important issue.

After testing the basic numerical methods in the 2-D LES code and getting

reasonable results, our next step was the extension of the 2-D code to 3-D. The

following chapters in this thesis will present the turbulence simulations done with

the 3-D LES code and the subsequent noise computations using various integral

acoustics methods.
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Figure 3.1. Computational grid used in the DNS. (Every 6th node is shown.)
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Figure 3.2. Instantaneous vorticity contours in a naturally developing
mixing layer. (Reω = 720)
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Figure 3.3. Scaled velocity profiles. Error-function profile also shown.
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Figure 3.4. Vorticity thickness growth in the mixing layer.
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Figure 3.5. Normalized Reynolds normal stress σxx profiles.
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Figure 3.6. Normalized Reynolds normal stress σyy profiles.
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Figure 3.7. Normalized Reynolds shear stress σxy profiles.
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Figure 3.8. Computational grid used in the LES. (Every 6th node is shown.)
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Figure 3.9. Instantaneous vorticity contours in a naturally developing
mixing layer. (Reω = 5, 333)
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Figure 3.10. Scaled velocity profiles. Error-function profile also shown.
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Figure 3.11. Vorticity thickness growth in the mixing layer.
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Figure 3.12. Normalized Reynolds normal stress σxx profiles.
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Figure 3.13. Normalized Reynolds normal stress σyy profiles.
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Figure 3.14. Normalized Reynolds shear stress σxy profiles.
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Table 3.1. Comparison of the normalized peak Reynolds stresses and
growth rates with available experimental and computational data.

Reω σxx σyy σxy
1
η

∂δω(x)
∂x

Reference

Wygnanski

- 0.031 0.019 0.009 0.19 and Fiedler’s

experiment [66]

Spencer

- 0.036 0.014 0.013 0.16 and Jones’

experiment [67]

Bell and

1,800 0.032 0.020 0.010 0.163 Mehta’s

experiment [68]

Rogers and

3,200 0.026 0.017 0.010 0.13 Moser’s

3-D DNS [69]

Stanley and

720 0.040 0.084 0.023 0.15 Sarkar’s

2-D DNS [70]

5,333 0.040 0.068 0.020 0.18 Bogey’s

2-D LES [71]

720 0.048 0.078 0.012 0.15 Our 2-D DNS

5,333 0.058 0.090 0.017 0.16 Our 2-D LES
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4. INITIAL 3-D ROUND JET SIMULATIONS WITH THE

CONSTANT-COEFFICIENT SMAGORINSKY MODEL

4.1 Estimation of the Kolmogorov Length Scale

Due to a wide range of length scales existing in turbulent flows, the computational

grids that are used for 3-D DNS and LES calculations have to provide sufficient grid

resolution throughout the turbulent flow that is being simulated and especially in

critical regions where the local length scales are expected to be very small. In a

DNS, if the grid resolution is not enough, numerical instabilities will occur due to the

unresolved scales and consequently, the simulation will and should eventually blow

up. In an LES, the effect of the unresolved scales on the resolved scales is represented

through the subgrid-scale (SGS) model and the dissipation provided by the SGS

model provides stability for the numerical computations. Hence, relatively coarse

grids can be employed in LES calculations. However, one still needs to know what

length scales are resolved with a given grid in a LES. Therefore, in order to have an

idea about the range of turbulent length scales that will be present in the flow that is

being simulated and generate computational grids that will allow sufficient resolution

in the simulations, it is well worth doing a Kolmogorov length scale analysis using

available experimental and/or DNS data for the problem under consideration. In

this section, the Kolmogorov length scale estimation will be presented for a 3-D

turbulent round jet using experimental data.

The Kolmogorov length scale, which is the characteristic length scale of the small-

est eddies present in a turbulent flow, is defined as

η =

(
ν3

ε

) 1

4

, (4.1)

where ν is the kinematic viscosity and ε is the dissipation.
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We can define a local Reynolds number based on jet centerline velocity and half-

radius as follows

Rec(x) =
Uc(x)r1/2(x)

ν
, (4.2)

where Uc(x) is the mean jet centerline velocity and r1/2(x) is the jet half-radius at

which the mean streamwise velocity is one-half of Uc(x). Using this equation, we can

express ν as

ν =
Uc(x)r1/2(x)

Rec(x)
. (4.3)

As mentioned by Pope [72], the experimental data of Hussein et al. [74] confirms

that the non-dimensional dissipation

ε̂ = ε

(
Uc

3

r1/2

)−1

, (4.4)

that is illustrated in figure 4.1, is self-similar and independent of the Reynolds number

in the fully developed turbulent region of the jet. From this equation, we get

ε = ε̂

(
Uc

3

r1/2

)
. (4.5)

Now, substituting for ν and ε into the Kolmogorov length scale equation, we obtain

the following relation
η

r1/2

= Rec
−3/4 ε̂−1/4. (4.6)

From experimental measurements, it is known that for the round jet,

Uc(x) = Uo
B

(x− xo)/Dj

r1/2(x) = S(x− xo), (4.7)

where B = 5.8, S = 0.094 (from [72]), Dj is the jet diameter, x is the streamwise

distance, and xo is the so-called virtual origin of the jet.

Therefore,

Rec(x) =
Uc(x)r1/2(x)

ν
=
Uo

ν

B

(x− xo)/d
S(x− xo) =

Uod

ν
B S = ReD B S, (4.8)

where ReD is the Reynolds number based on the jet diameter and nozzle exit condi-

tions. From the above equation, we see that the local Reynolds number is a constant
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and independent of the streamwise distance x in the fully turbulent region. Using

this result and recalling that ε̂ is self-similar and independent of the Reynolds num-

ber, it can be concluded from equation 4.6 that at a given ReD, the non-dimensional

Kolmogorov length scale profile in the fully developed turbulent region of the 3-D

round jet is simply self-similar.

The non-dimensional Kolmogorov length scale profile for a Reynolds number,

ReD of 3, 600 is shown in figure 4.2. As can be observed from the plot, the smallest

turbulent length scale occurs on the jet centerline. The local length scales get larger

as one moves away from the jet centerline along the radial direction.

The analysis done in this section will be utilized to determine what length scales

are resolved with the grids used in our numerical simulations.

4.2 Test Case 1 - LES at a Reynolds Number of 3,600

The first 3-D LES test case we considered is a turbulent round jet at a Mach

number of 0.9. The Reynolds number of the jet is

ReD =
ρoUoDj

µo

= 3, 600, (4.9)

where ρo, Uo, µo are the jet centerline density, velocity and viscosity at the nozzle

exit, respectively and Dj is the jet diameter. This is the same test case studied by

Freund [2] in his DNS.

The stretched Cartesian grid used in this simulation consisted of 340× 128× 128

points in the x, y, and z directions, respectively. Figures 4.3 and 4.4 illustrate the

x − y and y − z sections of our grid. The domain extends 60ro in the streamwise

direction and from −15ro to 15ro in the transverse y and z directions, where ro

is the jet radius. In the x direction, the physical region ends at x = 45ro. The

region from x = 45ro to x = 60ro is the sponge region that is used to dissipate

the fluctuations present in the flow field before they reach the outflow boundary.

The minimum grid spacing in the y and z directions is about 0.05ro around the jet

centerline. Exponential grid stretching is applied along the transverse directions such
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that the maximum spacing around the external boundaries is about 0.66ro. In the

physical region of the grid, the spacing along the streamwise direction is uniform and

about 0.15ro. In the sponge region, the grid is stretched using the grid-stretching

function proposed by Colonius et al. [59]. The first 300 points in the x direction

are in the physical region and the remaining 40 points form the sponge zone. The

maximum streamwise spacing at the end of the sponge zone is about 1ro. In the

DNS done by Freund [2], a 640 × 250 × 160-node cylindrical grid was used with a

domain size of about 50ro in the streamwise direction and about 20ro in the radial

direction. The physical portion of his computational domain extended 33ro in the

streamwise direction and 8ro in the radial direction. In Freund’s grid, the physical

portion of the domain was surrounded by an absorbing buffer zone in all directions.

The grid was highly stretched and dissipative terms were added to the equations

in his buffer zone. Freund’s grid was compressed radially with a minimum radial

spacing of 0.018ro around the centerline, and axially with minimum axial spacing of

0.049ro at around the axial position x = 20ro. His grid spacing changed by less than

1% per grid point. The azimuthal grid spacing was, of course, kept uniform.

For the inflow forcing, we used a method similar to that used by Freund [2] to

add random perturbations to the streamwise component of velocity on the inflow

boundary. The following velocity profile was specified on the inflow boundary

u(r) =
1

2
Uo

[
1 − tanh

[
b(θ, t)

(
r

ro

−
ro

r

)]]
, (4.10)

where ro is the jet radius, Uo is the mean jet centerline velocity on the inflow bound-

ary, and b is the shear layer thickness parameter with a mean value of 3.125. Larger

values of this parameter correspond to thinner shear layers. Freund [2] used a value

of 12.5 for this parameter since his fine grid enabled such thin shear layer resolu-

tions. It should be noted here that since a Cartesian grid is used in this simulation,

the shear layer resolution is not the same at all azimuthal locations. However, the

average number of grid points in the initial jet shear layer is about 8 which has been

found to be sufficient to accurately resolve the shear layer in this simulation. The

shear layer thickness parameter was varied along the azimuthal direction θ and in
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Table 4.1. Parameters used for inflow forcing.

Parameter ∆ per time step min. max.

A 0.0001 0.01 0.07

St 0.003 0.1 0.7

φ 0.003 - -

ψ 0.003 - -

time t in order to add small-amplitude random perturbations and excite the insta-

bilities in the jet. We used the following ad hoc modelling for b(θ, t), similar to that

used by Freund [2]

b(θ, t) = 3.125 +
2∑

m=0

1∑

n=0

Anm cos

(
StnmUo

2ro

+ φnm

)
cos(mθ + ψnm), (4.11)

where the parameters with the nm subscript were slowly varied in a random manner

during the simulation. At each time step, a random-number generator was used to

determine the 1-in-20 chance that the variation would change from positive (indi-

cating an increase) to negative (indicating a decrease) or vice versa and each of the

randomly varying parameters were either increased or decreased by a small amount

accordingly. The limits on the variation of the parameters used for inflow forcing as

well as the increments used per time step are given in table 4.1.

Following Morris et al. [21], we chose the Smagorinsky constant as Csgs = 0.012,

and the compressibility correction constant as CI = 0.0066 in our simulation. The

turbulent Prandtl number was chosen as Prt = 0.7.

For the mean density profile on the inflow boundary, we applied the following

distribution used by Freund [75]

ρ̄ = (ρo − ρ∞)
ū

Uo

+ ρ∞, (4.12)

where ū/Uo is the mean streamwise velocity on the inflow boundary normalized by

the jet centerline velocity, ρo is the density at the jet centerline, ρ∞ is the freestream
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density, and ρo/ρ∞ = 0.86. The mean pressure distribution on the inflow boundary

was kept uniform and equal to the jet centerline pressure.

The mean profiles on the inflow boundary were specified initially in the entire

domain and the simulation was started from these uniform initial conditions. We

used 128 processors on an SGI Origin 2000 computer of the National Computational

Science Alliance (NCSA) at the University of Illinois, Urbana-Champaign in our

simulation. We ran a total of 65,000 time steps during which an acoustic wave

propagating at the ambient sound speed travelled a distance of 36 times the domain

length in the streamwise direction. The initial transients exited the domain over

the first 15,000 time steps. We then collected the flow statistics over the 50,000

time steps. The simulation was performed in the 128-processor dedicated queue and

required a total run time of about 3.5 days to complete.

The solution was filtered using a 4th-order accurate penta-diagonal filter in each

spatial dimension at the end of every time step. Thompson’s non-reflecting boundary

conditions were used on the side boundaries of the domain as well as on the outflow

boundary at the end of the sponge zone. Special characteristic boundary conditions

were applied on the inflow boundary.

Figure 4.5 shows the instantaneous contours of vorticity magnitude on the x− z

plane. After the initial region of laminar flow, the transition process starts and the

jet eventually becomes fully turbulent. Since this is a low Reynolds number jet and

the initial shear layer of the jet is relatively thick, the potential core of the jet is

relatively long and does not break up until after x = 20ro. This potential core is

longer than the potential core length of 14ro obtained in Freund’s DNS [2] as well as

in the experiment of Stromberg et al. [3].

In figure 4.6, we plot the streamwise variation of the inverse of the mean centerline

velocity normalized by the jet inflow velocity. After transition to turbulence, we get

a linear growth. The slope of the line can be used to compute the jet decay coefficient

and our value is around 4.55. Experimental values of the jet decay coefficient are in

between 5.4 and 6.1. Our underpredicted value was initially believed to be related
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to the amplitude of the forcing that we used to excite the 3-D instabilities in the

flow. However, it was later realized that the forcing amplitude should only affect the

transition to turbulence and determine the location where the potential core of the jet

breaks up and, therefore, it should not have any effect on the jet decay coefficient [76].

Furthermore, during our high Reynolds number simulations that are presented in

the next section, we discovered that Thompson’s non-reflecting boundary conditions

actually did not provide the correct entrainment physics on the boundaries of a

Cartesian grid. Since we are dealing with a round jet problem, the ambient fluid

that is entrained by the jet should be coming in radially towards the jet centerline

along the boundaries of the y − z section of the grid that was previously shown

in figure 4.4. However, it was found that with Thompson’s boundary conditions,

the entrained fluid came in at almost normal angles pretty much everywhere along

the boundaries except at the corners. Clearly, this is not physical. Therefore, the

lack of the correct entrainment physics in the current simulation might be partially

responsible for the low value of the jet decay coefficient. The simulations done for

the high Reynolds number jet in the next section using Tam and Dong’s boundary

conditions instead of Thompson’s boundary conditions produce jet decay coefficient

values closer to the experimental data. It will also be shown in the next section that

the value of the Smagorinsky coefficient used in the subgrid-scale modelling also has

an influence on the jet decay coefficient as well as the jet spreading rate. Going back

to the results of the current test case, we see that the growth of the half-velocity

radius, illustrated in figure 4.7, also shows a linear growth in the turbulent region of

the jet, consistent with experimental observations. The slope of the linear line which

is defined as the jet spreading rate, is about 0.116. Experimental values for the jet

spreading rate range from 0.086 to 0.096. It is known that the jet spreading rate

decreases with increasing jet decay coefficient. Therefore, our overpredicted value of

the jet spreading rate is closely related to the low value of our jet decay coefficient.

Mean streamwise velocity profiles at two downstream locations are plotted in

figure 4.8 and compared with the experimental data of Hussein et al. [74] for an
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incompressible jet at ReD = 95, 500 as well as that of Panchapakesan and Lumley [77]

for an incompressible jet at ReD = 11, 000. From this figure, it can be observed that

the profiles of our compressible jet at the two downstream locations collapse onto

each other fairly well and exhibit self-similarity which is consistent with experimental

observations. Our results are also in very good agreement with the experimental

profiles of incompressible jets. We also compared our Reynolds stresses with the

available experimental data of Hussein et al. [74] and Panchapakesan and Lumley

[77]. The normalized Reynolds stresses in cylindrical coordinates are defined as

follows

σxx =
〈vx

′

vx
′

〉

U2
c

σrr =
〈vr

′

vr
′

〉

U2
c

σθθ =
〈vθ

′

vθ
′

〉

U2
c

σrx =
〈vr

′

vx
′

〉

U2
c

, (4.13)

where vx
′

, vr
′

, vθ
′

are the axial, radial and azimuthal components of the fluctuating

velocity, respectively, Uc is the mean jet centerline velocity at a given axial location,

and 〈 〉 denotes time-averaging. In order to compare our Reynolds stresses with the

experimental data, we transformed our Reynolds stresses from the Cartesian coor-

dinate system to the cylindrical coordinate system. The transformation process was

trivial and the details of it will be skipped here. Figures 4.9, 4.10, 4.11, 4.12 plot our

computed Reynolds stresses and compare them with the experimental data. From

these plots, we see that our Reynolds stress profiles also exhibit self-similarity, con-

sistent with experimental evidence, and our data are again in fairly good agreement

with experiment.

Finally, we looked at the length scales resolved in our simulation. Using the Kol-

mogorov length scale estimation that was presented earlier, we plotted the ratio of our

grid spacings to the local Kolmogorov length scales along the transverse and stream-

wise directions in figures 4.13 and 4.14. It should be noted that in our Kolmogorov

length scale estimation, we made use of the fact that the non-dimensional dissipation

profile is self-similar and independent of the Reynolds number in the fully turbulent

region of the jet. However, in the region immediately downstream of the end of

potential core, which is around x = 20ro in this simulation, the non-dimensional

dissipation profile may not be quite self-similar yet and hence our analysis may not
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be very accurate in this region. Nevertheless, we believe our analysis should be fairly

accurate in the far downstream portion of the jet. Keeping this in mind, we see that

in the region x > 25ro, our coarsest grid resolution along the transverse y direction

was slightly larger than 6 times the local Kolmogorov length scale. Our coarsest res-

olution in the streamwise direction was about 13 times the local Kolmogorov length

scale for x > 25ro. Analyzing the grid used by Freund [2] in his DNS, we also see that

his coarsest grid resolution was about 4 times the Kolmogorov scale. As one moves

further downstream, the Kolmogorov length scales get larger and better resolution

is obtained with our grid.

4.3 Test Case 2 - LES at a Reynolds Number of 36,000

For our second test case, we studied a turbulent round jet at a Reynolds number

of 36, 000. The stretched Cartesian grid used in this test case had 350 × 128 × 128

points in the x, y, and z directions respectively. Figure 4.15 plots the x− y section

of the grid. The domain extends to about 45ro in the streamwise direction and from

−15ro to 15ro in the transverse y and z directions, where ro is the jet radius. In the

x direction, the physical region ends at around x = 32ro. The grid spacing along the

x direction in the physical portion of the grid is uniform and about 0.10ro, which is

equal to two-thirds of the constant streamwise spacing in the previous grid that was

used for the low Reynolds number test case. The transverse grid point distribution

in the current grid was kept the same as in the previous grid. There are about 8 grid

points in the initial jet shear layer.

For the inflow forcing in this test case, we applied the same kind of forcing used

by Constantinescu and Lele [30] in their LES calculations. In this forcing, time-

harmonic fluctuations are imposed on the mean streamwise velocity on the inflow

boundary as follows

u(r) =
1

2
Uo

[
1 − tanh

[
b

(
r

ro

−
ro

r

)]]
(1 + α sin(2πSt t)), (4.14)
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where the Strouhal number, St = 2rof/Uo is 0.9, ro is the jet radius, Uo is the mean

jet centerline velocity on the inflow boundary, f is the frequency of the perturba-

tions, b = 3.125 is the shear layer thickness parameter, and the amplitude of the

sinusoidal oscillations, α is 0.005. Randomly generated perturbations are applied on

the azimuthal velocity component using the following equation

vθ
′

(r, θ) = 0.025Uo ε exp

(
−3

(
1 −

r

ro

)2
)
, (4.15)

where ε is a random number between −0.5 and 0.5. The mean azimuthal velocity on

the inflow boundary is zero. No perturbation is applied on the radial velocity com-

ponent. The exponential function in the above equation localizes the perturbations

within the shear layer region only.

As explained below, we did several runs in this test case. For all the simulations

presented in this section, we used 128 processors on Indiana University’s IBM-SP3 re-

search computer. Each run required about 3 days to complete. For every simulation,

we ran a total of 50,000 time steps during which an acoustic wave travelling at the

ambient sound speed moved a distance of about 37 times the domain length in the

streamwise direction. The initial transients exited the domain over the first 10,000

time steps. We then collected the flow statistics over the 40,000 time steps. Although

a value of Csgs = 0.012 was used for our low Reynolds number jet simulation, the

Smagorinsky coefficient at this higher Reynolds number was chosen as Csgs = 0.018

in an ad hoc manner. As the Reynolds number is increased, the dissipative length

scales are hardly resolved on relatively coarse grids, hence all the dissipation has to

come from the SGS model. Using the Kolmogorov length scale analysis earlier, our

coarsest grid resolution for this Reynolds number was seen to be between 50 and

60 times the local Kolmogorov length scale. Assuming that the upper limit of the

dissipative length scales is 60 times the Kolmogorov length scale [72,78], we see that

we hardly resolved any of the dissipative length scales in portions of the flow where

the local length scales were very small. We believe that a larger coefficient should

represent the effect of the dissipative length scales on the large scales more accu-
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rately at high Reynolds numbers on a relatively coarse grid. For comparison, Bogey

et al. [29] used a larger constant of Csgs = 0.182 = 0.0324 in their LES calculation

for a jet at a Reynolds number of 65,000. We kept the compressibility correction

constant at CI = 0.0066, and the turbulent Prandtl number at Prt = 0.7, same as

the values used in the low Reynolds number jet simulation.

As mentioned in the previous section, we discovered some entrainment flow prob-

lems with Thompson’s boundary conditions during the runs done in this test case.

Hence, starting from the current test case, we decided to employ Tam and Dong’s

boundary conditions in our future simulations.

Figure 4.16 shows the instantaneous contours of vorticity magnitude on the x−z

plane. We see that the potential core of the high Reynolds number jet breaks up

earlier than that of the low Reynolds number jet. The potential core length of the

Reynolds number 36,000 jet is about 14ro.

In order to study the effect of filtering on our results, we did a run using the

4th-order accurate implicit penta-diagonal filter as well as another run using the

6th-order accurate implicit tri-diagonal filter with αf = 0.49. The solution was

filtered once in each spatial dimension at the end of every time step in both runs.

Figures 4.17 through 4.23 summarize the mean flow results obtained with the 4th-

order accurate penta-diagonal filter whereas the figures 4.24 through 4.30 are the

ones obtained with the 6th-order accurate tri-diagonal filter. In general, the two sets

of results do not seem to differ much although the Reynolds stress profiles obtained

with the 6th-order filter match the experimental profiles of Hussein et al. [74] slightly

better. The jet decay coefficients obtained in both runs still seem a bit low relative

to the experimental values. The jet spreading coefficient obtained with the 4th-order

accurate filter is just below the upper limit of the experimental values while the one

obtained with the 6th-order accurate filter is slightly larger. The mean streamwise

velocity profiles as well as the Reynolds stress profiles in both cases compare fairly

well with experiment.
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We also investigated the effect of the Smagorinsky coefficient on the mean flow

properties. We did a new run using Csgs = 0.019 and the 6th-order filter with

αf = 0.49. The mean flow results for this simulation are plotted in figures 4.31

through 4.37. As can be seen from these results, a slightly larger Smagorinsky

coefficient results in a jet decay coefficient of 5.76 which is within the range of

experimental observations. The jet decay coefficient obtained with Csgs = 0.018 was

5.0, a bit smaller than the lower limit of experimental data. The reason for this

difference is believed to be the fact that with a higher SGS model coefficient, the jet

loses more of its energy into dissipation and does not have as much energy left to

spread out. Furthermore, with increasing jet decay coefficient, the jet spreading rate

gets smaller. This is justified by the fact that a jet spreading rate of 0.106 is obtained

with Csgs = 0.018 while a value of 0.086 is obtained with Csgs = 0.019. Hence, the

jet decay coefficient as well as the jet spreading rate are directly affected by the SGS

model constant. For a 5.56% increase in the model constant, the jet decay coefficient

increases by 15.20% while the jet spreading rate decreases by 18.87%. Another

interesting fact is that even though the simulation with Csgs = 0.019 produced a

jet decay coefficient and a jet spreading rate in good agreement with experiment,

we see that the Reynolds stress profiles in this simulation have significantly changed

relative to the ones obtained in the simulation done with Csgs = 0.018. This must be

due to the too dissipative nature of the Smagorinsky SGS model. A slight increase

in the model coefficient provides more dissipation but at the same time it suppresses

more of the turbulence and subsequently causes a significant change in the Reynolds

stresses.

Finally, in order to see how much the filtering parameter αf affects the mean

flow results, we did a simulation using αf = 0.45 in our 6th-order tri-diagonal filter

with the Smagorinsky coefficient chosen as Csgs = 0.018. Shown in figures 4.38

through 4.44 are the results obtained in this run. It is easily observed that the lower

value of the filtering parameter qualitatively has the same effect as increasing the

Smagorinsky coefficient. This makes sense since the lower values of αf correspond
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to a more dissipative filter. The dissipation coming from the filter at this value of

αf seems to be causing noticeable changes in the Reynolds stress profiles relative to

the ones obtained using αf = 0.49 with Csgs = 0.018.

In conclusion, we can summarize that the mean flow properties calculated in our

simulations using the Smagorinsky SGS model seem reasonable when compared with

the experimental data and provide us with valuable evidence towards the full vali-

dation of our 3-D LES code. The choice of the Smagorinsky SGS model constant,

however, seems to be quite important to the mean flow properties. A lower value

of the filtering parameter, αf which is used in the 6th-order accurate tri-diagonal

filter, was found to have effects qualitatively similar to those caused by increasing

the Smagorinsky constant. Furthermore, a slight change in the Smagorinsky model

constant alters the Reynolds stress profiles quite significantly. Clearly, the Smagorin-

sky model was found to possess some undesirable features. In the next chapter, we

will address the shortcomings of the Smagorinsky SGS model by replacing it with a

dynamic SGS model in which the SGS model coefficients are computed dynamically

as functions of space and time during the simulations. The dynamic model allows

automatic adjustment of the model coefficients to their optimum values throughout

the domain and yields a more accurate representation of the actual flow physics.
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Figure 4.1. Non-dimensional dissipation profile provided by the ex-
perimental data of Hussein et al. [74].
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Figure 4.2. Non-dimensional Kolmogorov length scale profile for ReD = 3, 600.
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Figure 4.3. The x− y section of the computational grid used in the
ReD = 3, 600 simulation. (Every 2nd node is shown.)
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Figure 4.4. The y − z section of the computational grid used in the
ReD = 3, 600 simulation. (Every 2nd node is shown.)
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Figure 4.5. Instantaneous contours of vorticity magnitude on the
x− z plane at y = 0, ReD = 3, 600. 30 levels shown.
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Figure 4.6. Inverse of the mean streamwise velocity on the centerline
normalized by the jet inflow velocity, ReD = 3, 600.
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Figure 4.7. Half-velocity radius normalized by the jet radius, ReD = 3, 600.
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Figure 4.8. Normalized mean streamwise velocity profiles and com-
parison with experimental data, ReD = 3, 600.
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Figure 4.9. Normalized Reynolds normal stress σxx profiles and com-
parison with experimental data, ReD = 3, 600.
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Figure 4.10. Normalized Reynolds normal stress σrr profiles and
comparison with experimental data, ReD = 3, 600.



72

r / r1/2

σ θθ

0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06
x = 40ro

x = 45ro

Hussein et al. data
Panchapakesan and Lumley data

Figure 4.11. Normalized Reynolds normal stress σθθ profiles and
comparison with experimental data, ReD = 3, 600.
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Figure 4.12. Normalized Reynolds shear stress σrx profiles and com-
parison with experimental data, ReD = 3, 600.
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Figure 4.13. Ratio of the transverse grid spacing along the y direction
to the local Kolmogorov length scale, ReD = 3, 600.
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Figure 4.15. The x− y section of the computational grid used in the
ReD = 36, 000 simulation. (Every 2nd node is shown.)
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Figure 4.16. Instantaneous contours of vorticity magnitude on the
x− z plane at y = 0, ReD = 36, 000. 30 levels shown.
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Figure 4.17. Inverse of the mean streamwise velocity on the center-
line normalized by the jet inflow velocity, ReD = 36, 000, 4th-order
accurate filter, Csgs = 0.018.
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36, 000, 4th-order accurate filter, Csgs = 0.018.
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Figure 4.19. Normalized mean streamwise velocity profiles and com-
parison with experimental data, ReD = 36, 000, 4th-order accurate
filter, Csgs = 0.018.
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Figure 4.20. Normalized Reynolds normal stress σxx profiles and
comparison with experimental data, ReD = 36, 000, 4th-order accu-
rate filter, Csgs = 0.018.
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Figure 4.21. Normalized Reynolds normal stress σrr profiles and com-
parison with experimental data, ReD = 36, 000, 4th-order accurate
filter, Csgs = 0.018.
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Figure 4.22. Normalized Reynolds normal stress σθθ profiles and com-
parison with experimental data, ReD = 36, 000, 4th-order accurate
filter, Csgs = 0.018.
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Figure 4.23. Normalized Reynolds shear stress σrx profiles and com-
parison with experimental data, ReD = 36, 000, 4th-order accurate
filter, Csgs = 0.018.
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Figure 4.24. Inverse of the mean streamwise velocity on the center-
line normalized by the jet inflow velocity, ReD = 36, 000, 6th-order
accurate filter, Csgs = 0.018, αf = 0.49.
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Figure 4.25. Half-velocity radius normalized by the jet radius, ReD =
36, 000, 6th-order accurate filter, Csgs = 0.018, αf = 0.49.
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Figure 4.26. Normalized mean streamwise velocity profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.018, αf = 0.49.
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Figure 4.27. Normalized Reynolds normal stress σxx profiles and
comparison with experimental data, ReD = 36, 000, 6th-order accu-
rate filter, Csgs = 0.018, αf = 0.49.
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Figure 4.28. Normalized Reynolds normal stress σrr profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.018, αf = 0.49.
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Figure 4.29. Normalized Reynolds normal stress σθθ profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.018, αf = 0.49.
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Figure 4.30. Normalized Reynolds shear stress σrx profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.018, αf = 0.49.
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Figure 4.31. Inverse of the mean streamwise velocity on the center-
line normalized by the jet inflow velocity, ReD = 36, 000, 6th-order
accurate filter, Csgs = 0.019, αf = 0.49.
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Figure 4.32. Half-velocity radius normalized by the jet radius, ReD =
36, 000, 6th-order accurate filter, Csgs = 0.019, αf = 0.49.
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Figure 4.33. Normalized mean streamwise velocity profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.019, αf = 0.49.
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Figure 4.34. Normalized Reynolds normal stress σxx profiles and
comparison with experimental data, ReD = 36, 000, 6th-order accu-
rate filter, Csgs = 0.019, αf = 0.49.
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Figure 4.35. Normalized Reynolds normal stress σrr profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.019, αf = 0.49.
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Figure 4.36. Normalized Reynolds normal stress σθθ profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.019, αf = 0.49.
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Figure 4.37. Normalized Reynolds shear stress σrx profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.019, αf = 0.49.
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Figure 4.38. Inverse of the mean streamwise velocity on the center-
line normalized by the jet inflow velocity, ReD = 36, 000, 6th-order
accurate filter, Csgs = 0.018, αf = 0.45.
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Figure 4.39. Half-velocity radius normalized by the jet radius, ReD =
36, 000, 6th-order accurate filter, Csgs = 0.018, αf = 0.45.
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Figure 4.40. Normalized mean streamwise velocity profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.018, αf = 0.45.
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Figure 4.41. Normalized Reynolds normal stress σxx profiles and
comparison with experimental data, ReD = 36, 000, 6th-order accu-
rate filter, Csgs = 0.018, αf = 0.45.
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Figure 4.42. Normalized Reynolds normal stress σrr profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.018, αf = 0.45.
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Figure 4.43. Normalized Reynolds normal stress σθθ profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.018, αf = 0.45.
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Figure 4.44. Normalized Reynolds shear stress σrx profiles and com-
parison with experimental data, ReD = 36, 000, 6th-order accurate
filter, Csgs = 0.018, αf = 0.45.
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5. LES OF A REYNOLDS NUMBER 100,000 ROUND

JET WITH THE DYNAMIC SMAGORINSKY MODEL

AND JET AEROACOUSTICS

In this chapter, we will present both aerodynamics and aeroacoustics results from an

LES performed with the dynamic SGS model for a turbulent isothermal round jet

at a Mach number of 0.9, and Reynolds number ReD = ρoUoDj/µo = 100, 000 where

ρo, Uo, µo are the jet centerline density, velocity and viscosity at the nozzle exit, re-

spectively and Dj is the jet diameter. The jet centerline temperature was chosen the

same as the ambient temperature and set to 288K. The turbulent Prandtl number

was set to a constant value of 0.7, while the compressibility correction constant in

the SGS model was set to 0.

A fully curvilinear grid consisting of approximately 12 million grid points was

used in the simulation. The physical portion of the domain extended to 60ro in the

streamwise direction and from −20ro to 20ro in the transverse y and z directions,

where ro = Dj/2 is the jet radius. The coarsest resolution in this simulation is

estimated to be about 170 times the local Kolmogorov length scale. Figures 5.1

through 5.4 show how the grid is stretched in all three directions. Initially, the grid

points are clustered around the shear layer of the jet in order to accurately resolve

the shear layer. After the potential core of the jet breaks up, the grid is also stretched

in the y and z directions in order to redistribute the grid points and achieve a more

uniform distribution. The y− z cross-section of the grid remains the same along the

streamwise direction after a distance of 35ro. A total of 10 modes were used in the

vortex ring forcing. The forcing parameter α was set to 0.01. The reader is referred

to section 2.2.5 for the details of the vortex ring forcing. The tri-diagonal spatial
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filter was used to filter the flow field using the parameter αf = 0.47. The following

mean streamwise velocity profile was imposed on the inflow boundary

ū(r) =
Uo

2

[
1 + tanh

[
7.5

(
1 −

r

ro

)]]
. (5.1)

This velocity profile is similar to the one used by Bogey and Bailly in their LES

calculations [33], [34], [35]. It should be noted here that the given profile produces an

initial jet shear layer that is thinner than those used in the previous lower Reynolds

number jet simulations. We were able to afford a thinner jet shear layer in the

current simulation since the grid used here has a finer resolution than those used

in the previous lower Reynolds number jet simulations. There are about 14 grid

points in the initial jet shear layer. The following Crocco-Buseman relation for an

isothermal jet is specified for the density profile on the inflow boundary [33]

ρ̄(r) = ρo

(
1 +

γ − 1

2
M2

r

ū(r)

Uo

(
1 −

ū(r)

Uo

))−1

, (5.2)

where Mr = 0.9.

5.1 Jet Mean Flow Field

It has been observed by Bogey and Bailly [33] that the jet spreading rate and

the jet decay coefficient do not reach their asymptotic values if the computational

domain size is kept relatively short. Furthermore, they found out that Reynolds

stresses do not reach their self-similar state either in a relatively short domain. Our

aim is to fully validate the dynamic model, so it is important that the asymptotic jet

spreading rate and the centerline velocity decay rate as well as the self-similar state

of Reynolds stresses are reached in the simulation. This will facilitate the comparison

of our numerical results with the experimental jet data at similar flow conditions.

Hence, we decided to choose a long domain length of 60ro in the streamwise direction.

In our simulation, the initial transients exited the domain over the first 20,000

time steps. An ambient sound wave travels 8 times the domain length in the stream-

wise direction in 20,000 time steps. We then collected the flow statistics over 150,000



91

time steps. This sampling period corresponds to a time length in which an ambient

sound wave travels about 60 times the domain length in the streamwise direction.

A total of about 30 days of computing time was needed for this simulation on an

IBM-SP3 machine using 160 processors in parallel. It should be noted that the mean

flow convection speeds in the far downstream region are relatively low, hence the tur-

bulence convects slowly in the far downstream region resulting in slowly converging

statistics. As a result, we had to collect data over a period of 150,000 time steps to

obtain reasonably converged statistics.

In figure 5.5, the one-dimensional spectrum of the streamwise velocity fluctua-

tions at the x = 20ro location on the jet centerline is shown. The temporal spectrum

of the streamwise velocity fluctuations at the given location was coupled with Tay-

lor’s hypothesis of frozen turbulence to compute this one-dimensional spectrum. In

this hypothesis, the one-dimensional spectrum of the streamwise velocity fluctuations

is calculated from the temporal streamwise velocity fluctuations as follows

E(kx) = Ef (f)
ū

2π
, (5.3)

where

kx = f
2π

ū
, (5.4)

is the axial wavenumber, f is the frequency and Ef (f) is the power spectral density

of the streamwise velocity fluctuations. As expected, the one-dimensional spectrum

becomes almost flat as the axial wavenumber approaches zero. We also show the grid

cutoff wavenumber corresponding to our grid resolution at the given axial location.

The spectral energy at the grid cutoff wavenumber is about 2 orders of magnitude

smaller than that at the lowest wavenumbers. Before the grid cutoff wavenumber, the

spectrum exhibits a decay which is quite similar to Kolmogorov’s −5/3 decay rate

prediction in the inertial range of turbulence. This means that our grid resolution

is fine enough to resolve a portion of the inertial range of wavenumbers at the given

axial location.
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For code validation, we first compared our jet’s centerline decay rate in the far

downstream region with the experiments of Zaman [79]. Zaman [79] did a series of

experiments for initially compressible jets and examined the asymptotic jet centerline

velocity decay and entrainment rates. He found out that the asymptotic jet centerline

velocity decay rate decreased with increasing initial jet Mach number. In figure 5.6,

we plot the streamwise variation of the inverse of the mean jet centerline velocity

normalized by the jet inflow velocity. In the far downstream region, we see that

the slope of the linear fit to the curve is 0.161. From the experiments of Zaman

[79], the corresponding experimental slope for a Mach 0.9 jet is about 0.155 which

is very close to our computed value. For incompressible jets, on the other hand,

experimental values ranging from 0.165 to 0.185 have been previously reported in

the literature [74], [77], [80].

The end of the potential core of our jet is at around x = 11ro. Raman et al. [81]

measured a potential core length of about 10ro for jets with initially transient shear

layers. Arakeri et al. [82] reported a value of about 14ro for the potential core length

of a Mach 0.9, Reynolds number 500,000 jet with initially transient shear layers.

For high Reynolds number jets with initially turbulent shear layers, potential core

lengths of about 14ro have been measured by Raman et al. [81] and Lau et al. [83].

Our jet’s potential core length compares favorably with these existing experimental

measurements.

In figure 5.7, we show the streamwise variation of the mass flux, m, normalized by

the mass flux through the jet nozzle, me. In the far downstream region, we again see

a linear growth. This time the slope of the line is 0.267 showing very good agreement

with the experimental value of 0.26 from Zaman [79]. The jet spreading rate, which

is the slope of the half-velocity radius growth in the far downstream region depicted

in figure 5.8, has been found to be 0.092 in our simulation. The half-velocity radius,

r1/2 at a given downstream location is defined as the radial location where the mean

streamwise velocity is one half of the jet mean centerline velocity at that location.

To the best of our knowledge, no experimental value has been reported from an
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initially compressible jet in the literature for the jet spreading parameter. However,

experimental values ranging from 0.086 to 0.096 have been previously found for

incompressible jets. Hence, our computed value is within the experimental range

observed for incompressible jets [74], [77], [80].

Properly scaled mean streamwise velocity profiles at three downstream locations

are plotted in figure 5.9. The self-similarity coordinate is taken as r/r1/2 where r is

the radial location and r1/2 is the half-velocity radius. The vertical axis of the figure is

normalized by the mean jet centerline velocity. From this figure, it can be observed

that the profiles of our jet at the three downstream locations collapse onto each

other fairly well and exhibit self-similarity which is consistent with experimental

observations. Our results are also in very good agreement with the experimental

profiles of Hussein et al. [74] for an incompressible jet at ReD = 95, 500 as well as

that of Panchapakesan and Lumley [77] for an incompressible jet at ReD = 11, 000.

The convective Mach number of the jet flow is low in the far downstream region,

hence the compressibility effects are negligible. Therefore, it is safe to compare our

profiles in the far downstream region with incompressible experimental data.

We also compared our Reynolds stress profiles with the experimental profiles

of Hussein et al. [74] and Panchapakesan and Lumley [77]. Figures 5.10 through

5.13 plot our properly scaled Reynolds stress profiles at five downstream locations

and compare them with the two experiments. Again, the self-similarity coordinate

is taken as r/r1/2. The vertical axis of the figures is normalized by the square

of the mean jet centerline velocity. The downstream locations are chosen at x =

25ro, x = 30ro, x = 45ro, x = 50ro, and x = 55ro. As can be observed from the

plots, the properly scaled profiles at x = 45ro, x = 50ro, and x = 55ro collapse

onto each other exhibiting self-similarity. It is also clear that the self-similarity

region of the Reynolds stresses is not reached at around x = 25ro or x = 30ro

since the profiles at these two downstream locations are lower than those in the

far downstream region. Overall, the agreement of the profiles at x = 45ro, x =

50ro, and x = 55ro with experiments is very good. It should be noted that our
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Reynolds stresses computed by LES are based on filtered velocities, while the actual

experimental profiles are based on unfiltered velocities. Hence, some differences

should be expected between LES and experiments when the Reynolds stresses are

compared. As can be seen from the figures, the Reynolds normal stress σxx profiles

match the experiment of Panchapakesan and Lumley [77] better, while the other

Reynolds stresses are in between the two experimental profiles. It should also be

noted that the difference between the initial conditions imposed in our simulation and

the actual initial conditions in experimental jets could be another possible reason for

the differences between LES and experimental profiles. We have imposed randomized

velocity fluctuations in the form of a vortex ring [58] in our simulation since the

actual nozzle geometry was not included in the calculations. Furthermore, it can

be argued that the experimental Reynolds stress profiles have been measured in the

very far downstream region, usually at distances of 100 jet radii or more. It has also

been observed experimentally that the different Reynolds stress components reach

asymptotic self-similarity at different downstream locations, depending on initial

conditions. The Reynolds number of the jet is also expected to have an influence on

where exactly the self-similarity region is reached. The experiments of Wygnanski

and Fiedler [66] suggest a distance of about 100 jet radii downstream of the jet

nozzle for the start of the self-similarity region in high Reynolds number jets, while

Freund’s DNS for a Reynolds number 3,600 jet [2] shows the self-similarity region

begins at around x = 25ro in a low Reynolds number jet. Since our domain length

of 60 jet radii is still relatively short compared to experiments and the jet Reynolds

number is relatively high, the normalized Reynolds normal stresses σxx may not have

reached their true asymptotic values. If we did a new simulation using a domain

longer than 60ro in the streamwise direction, it is possible that the Reynolds normal

stress σxx profiles in the far downstream region might shift upwards and come in

between the two experiments. However, such a simulation would require even more

grid points and many more time steps to run since the very slowly convecting mean
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flow in the far downstream region would cause very slowly converging flow statistics.

Hence such a simulation would not be very practical.

To summarize, the mean flow properties computed using the dynamic SGS model

compared very well with the experimental data. Furthermore, the comparison of

Reynolds stresses in the present simulation with experiments is found to be reason-

able. These findings provide us with valuable evidence towards the validity of the

numerical schemes as well as the dynamic subgrid-scale model used in our LES code.

5.2 Far Field Aeroacoustics

In this section, we will look at some far field aeroacoustics results obtained by

coupling the near field LES data with a Ffowcs Williams-Hawkings code which has

the capability to work on any general control surface geometry. We put a control sur-

face around our jet as illustrated in figure 5.14 and we gathered flow field data on the

control surface at every 10 time steps over a period of 23,000 time steps during our

LES run. The control surface starts 1 jet radius downstream of the inflow boundary

and extends to 60 jet radii along the streamwise direction. To investigate the effect

of the streamwise length of the control surface on the far field noise predictions, we

divided the control surface into 3 segments. As can be seen in figure 5.14, the first

segment extends to 35ro in the streamwise direction, while the second and third seg-

ments extend to 45ro and 60ro, respectively. Hence, the total streamwise lengths of

these 3 control surfaces are 34ro, 44ro and 59ro. The total acoustic sampling period

corresponds to a time scale in which an ambient sound wave travels about 9.4 times

the domain length in the streamwise direction. Assuming at least 6 points per wave-

length are needed to accurately resolve an acoustic wave, we see that the maximum

frequency resolved with our grid spacing around the control surface corresponds to

a Strouhal number of approximately 1.0. The Nyquist frequency, on the other hand,

which is the maximum frequency that can be resolved with the time increment of

our data sampling rate, corresponds to a Strouhal number of about 4.55. However,
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we choose the maximum frequency that is based on spatial resolution as our cutoff

frequency. The time increment used in the LES corresponds to a Strouhal number

of about 45.45. Based on the data sampling rate, there are about 10 temporal points

per period in the highest resolved frequency. Such a temporal resolution is adequate.

The acoustic pressure spectra computed using the data directly provided by LES

at some arbitrary points in the near field of the jet were compared against the FWH

predictions at the same near field observation points in order to validate the FWH

code. Figures 5.15 and 5.16 show such comparisons at two near field points. As

can be seen from the figures, the noise spectra predicted by the FWH method at

these two observation points are almost identical to the noise spectra computed using

the direct LES data. Excellent agreement was also obtained at the other near field

observation points not shown here. These observations provide proof for the validity

the FWH code.

We computed the overall sound pressure levels along an arc of radius 60ro from

the jet nozzle. The center of the arc is chosen as the jet nozzle exit and the angle

θ is measured from the jet axis as illustrated in figure 5.17. We applied the Ffowcs

Williams - Hawkings method to compute the acoustic pressure signal at 36 equally

spaced azimuthal points on a full circle at a given θ location on the arc. θ values

on the arc range from 25◦ to 90◦ with an increment of 5◦. The far field noise

calculations were performed using 60 processors in parallel on an IBM-SP3. The

computation of the 2048-point time history of acoustic pressure at a given far field

location took about 7 minutes of computing time. Hence, a total of 59 hours was

needed to compute the acoustic pressure history at a total of 504 far field points.

In order to confine spurious spectral contributions to low frequencies, we multiplied

the pressure history at every azimuthal location by a windowing function similar to

that used by Freund [2]. We ran the windowed pressure history through a 2048-point

Fast Fourier Transform, and converted to polar notation to obtain the power spectral

density at each frequency. We then averaged the acoustic pressure spectra over the

equally spaced 36 azimuthal points and finally integrated the averaged spectrum to
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Table 5.1. Some jet noise experiments with similar Mach numbers.

M ReD Reference

0.9 540,000 Mollo-Christensen et al. [85]

0.88 500,000 Lush [86]

0.9 3,600 Stromberg et al. [3]

0.9 100,000 Our 3-D LES

compute the overall sound pressure level at the given θ location. Figure 5.18 shows

our overall sound pressure levels computed along the arc and compares them with

some experimental data. Table 5.1 summarizes the Mach numbers and Reynolds

numbers of the experiments that we are doing comparisons with. It should be noted

that the experimental jets were cold jets, whereas our jet is an isothermal jet. We

also plot the SAE ARP 876C [84] database prediction for an isothermal Mach 0.9

jet. This database consists of actual engine jet noise measurements and can be used

to predict overall sound pressure levels within a few dB at various jet operating

conditions. The same database was also used to predict the overall sound pressure

levels for a cold Mach 0.9 jet with a temperature ratio of To/T∞ = 0.86 and the

differences between the isothermal and cold jet predictions were found to be only 0.3

dB.

From the OASPL plot, we see that the control surface with streamwise length

59ro predicts a continuous increase in OASPL values as the observation angle, θ

drops towards the θ = 25◦ limit. On the other hand, the control surface with

streamwise length 44ro predicts a drop-off in OASPL as θ decreases from 30◦ to

25◦, whereas the control surface with streamwise length 34ro gives a similar drop-off

in OASPL as θ decreases from 40◦ to 25◦. Compared to 59ro, the control surfaces

with streamwise lengths 34ro and 44ro are relatively short. Hence, these 2 surfaces

cannot effectively capture the acoustic waves travelling at the shallow angles and this

explains the behavior of the predictions of these 2 control surfaces at observation
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angles which are close to the jet axis. The OASPL prediction of the control surface

with streamwise length 59ro is, of course, the most accurate one and this prediction

will be used from this point on to make comparisons with other data. From the

OASPL plot, we also see that our jet is louder than the experimental jets of Lush [86]

and Stromberg et al. [3] for all points along the arc. On the other hand, our prediction

is within 1.5 dB of the measurements of Mollo-Christensen et al. [85]. We also

see as much as 3 dB difference between our prediction and the SAE ARP 876C

prediction at the downstream angles where θ < 40◦. The missing higher frequencies

in the LES are expected to increase our OASPL predictions by a few more dB.

The differences between the current predictions and experimental measurements are

believed to be related to the inflow forcing employed in the simulation. Since the

actual nozzle geometry is not included in the present computations, randomized

velocity fluctuations in the form of a vortex ring have been imposed a short distance

downstream of the inflow boundary in order to trigger the instabilities in the flow.

This vortex ring forcing is the same type of forcing employed by Bogey and Bailly [58]

in their LES calculations. In a recent study, Bogey and Bailly [34] took a close look

at the effects of the inflow conditions on the jet flow and noise and they showed that

the inflow forcing has a significant impact on the noise of the jet. We will also look

at the effects of the inflow forcing on the jet noise in the next chapter and show that

the far field noise is indeed dependent upon how the inflow forcing is done in the

LES.

We should also mention here that in the LES done by Zhao et al. [20] for a

Mach 0.9, Reynolds number 3,600 jet, the agreement between the overall sound

pressure levels predicted by LES and the experiments was better than the agreement

observed between our LES and the experiments. However, Zhao et al. [20] had used

a relatively coarse mesh consisting of about 2 million grid points in their LES. They

do not provide information about the cut-off frequency corresponding to their grid

resolution. It is believed that the low cut-off frequency due to the relatively coarse

mesh used in their LES is primarily responsible for the better agreement of their
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overall sound pressure levels with the experiments. As the cut-off frequency gets

higher, integration of the noise spectra over a wider resolved frequency range results

in increased overall sound pressure levels.

Finally, we compare our acoustic pressure spectra at three observation locations

with the recent results of Bogey and Bailly [33] for an isothermal round jet at a

Reynolds number of 400,000. It should be noted here that Bogey and Bailly [33]

computed the spectra in the near field of the jet only, using the data directly provided

by LES. The first observation point of Bogey and Bailly [33] is located inside of

our control surface while the other two are located outside, hence we can directly

compute the near field spectra at the latter two points using the Ffowcs Williams

- Hawkings method. On the other hand, in order to make a comparison at their

first near field observation point which is located inside of our control surface, we

first adjust our θ location along the far field arc at R = 60ro such that an acoustic

ray drawn between the end of the potential core (x = 11ro) and the θ location on

the arc crosses their near field observation point. After we compute our far field

spectrum at the corresponding θ location on the arc, we can then transfer the far

field spectrum to the near field observation point using the r−1 decay assumption of

acoustic waves. In this assumption, the acoustic wave amplitudes drop by a factor

of 2 for every doubling of the distance from the source region. The source region is

assumed to be compact and taken at the end of the potential core of the jet.

The acoustic pressure spectra are plotted as the sound pressure level (SPL) versus

the Strouhal number which is defined as St = fDj/Uo, where f is the frequency,

Dj and Uo are the jet nozzle diameter and the jet centerline velocity on the inflow

boundary, respectively. It should be mentioned here that since the computed spectra

are noisy, the spectra that are shown are polynomial fits to the actual computed

spectra. Figure 5.19 plots the spectrum at the x = 29ro and r = 12ro location

over our resolved frequency range and compares it with the corresponding near field

spectrum of Bogey and Bailly [33]. An acoustic ray that originates from the end of

the potential core and passes through this near field observation point hits the far
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field arc at around the θ = 25◦ location. The far field spectrum at this θ location on

the arc is also shown in the figure. The distance between the far field observation

point and the end of the potential core is about 50.25ro, whereas the distance between

the near field point and the end of the potential core is 21.63ro. The ratio of these

two distances is about 2.32. A factor of 2.32 means about 7.32 dB/St difference

according to the r−1 decay assumption of acoustic waves. Hence we shift our far

field spectrum computed at R = 60ro and θ = 25◦ upwards by 7.32 dB/St to get

our near field spectrum at the first observation point of Bogey and Bailly [33]. We

see that our spectrum has a peak at around St = 0.25 while that of Bogey and

Bailly [33] is at St = 0.3. The peak of our spectrum has a sound pressure level

(SPL) slightly higher than that of Bogey and Bailly [33]. We also see that after

the peak, our spectrum decays somewhat faster than that of Bogey and Bailly [33].

Finally, from our spectrum, it is observed that there is a drop of about 15 dB/St in

the sound pressure level from the peak Strouhal number of 0.25 to the grid cutoff

Strouhal number of 1.0. Figures 5.20 and 5.21 show our near field spectra at the

other two observation points, respectively and make comparisons with the spectra

obtained by Bogey and Bailly [33]. The acoustic rays that originate from the end of

the potential core and pass through these two near field observation points hit the

far field arc at the θ = 50◦ and θ = 80◦ locations, respectively. We also show our far

field spectra corresponding to these two near field observation points. From these

figures, we see that our near and far field spectra basically have the same shape.

Our spectra also become broad-band at these observation points demonstrating the

fact that higher frequencies are becoming more dominant. It is also interesting to

note that our spectra demonstrate a decay after they reach their peak, whereas the

spectra of Bogey and Bailly [33] stay relatively flat after the peak.

One possible reason for the differences between our spectra and those of Bogey

and Bailly [33] could be the different Reynolds numbers of the two simulations. It

should also be reminded here that Bogey and Bailly [33] did not employ any SGS

model in their LES. Instead, they treated the spatial filter used in their simulation
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as the SGS model. In a recent study, Bogey and Bailly [35] also looked at the

effect of SGS modelling on the computed jet noise. Their comparisons of acoustic

pressure spectra obtained with and without an SGS model for a round jet at Reynolds

number 400,000 are very similar to our observations in this study shown in the next

chapter. These findings imply that the eddy viscosity associated with the SGS model

is somehow affecting the well-resolved length scales of motion thereby resulting in a

reduction of the amplitudes of the well-resolved acoustic waves. In the next chapter,

we will look at the effects of the dynamic Smagorinsky model on the jet noise in

more detail.

There is almost 10 dB/St difference between our near and far field spectra in

figure 5.20. The distance between the far field point and the end of the potential

core is about 53.60ro, whereas the distance between the near field point and the

end of the potential core is 17.49ro. The ratio of these two distances is about 3. A

factor of 3 means about 10 dB/St difference according to the r−1 decay assumption

of acoustic waves. Similarly, the difference between our near and far field spectra in

figure 5.21 is about 12 dB/St. In this case, the ratio of the far field observation point

distance to the near field observation point distance is about 4 which also translates

into 12 dB/St difference according to the r−1 decay assumption.
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Figure 5.1. The x − y cross-section of the grid on the z = 0 plane.
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Figure 5.2. The y − z cross-section of the grid on the x = 5ro plane.
(Every 4th grid node is shown.)
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Figure 5.3. The y−z cross-section of the grid on the x = 15ro plane.
(Every 4th grid node is shown.)
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Figure 5.4. The y−z cross-section of the grid on the x = 35ro plane.
(Every 4th grid node is shown.)
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parison with experimental data.
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Figure 5.11. Normalized Reynolds normal stress σrr profiles and
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r / r1/2

σ θθ

0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06
x = 25ro

x = 30ro

x = 45ro

x = 50ro

x = 55ro

Hussein et al. data
Panchapakesan and Lumley data

Figure 5.12. Normalized Reynolds normal stress σθθ profiles and
comparison with experimental data.



108

r / r1/2

σ rx

0 0.5 1 1.5 2 2.5
0

0.005

0.01

0.015

0.02

0.025
x = 25ro

x = 30ro

x = 45ro

x = 50ro

x = 55ro

Hussein et al. data
Panchapakesan and Lumley data

Figure 5.13. Normalized Reynolds shear stress σrx profiles and com-
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Figure 5.15. Acoustic pressure spectra at x = 44.97ro, y = 16.02ro, z = 0.11ro.
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Figure 5.16. Acoustic pressure spectra at x = 55.06ro, y = 16.02ro, z = 0.11ro.
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Figure 5.18. Overall sound pressure levels at 60ro from the nozzle exit.
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Figure 5.19. Acoustic pressure spectrum at R = 60ro, θ = 25◦ in the
far field and acoustic pressure spectra at x = 29ro, r = 12ro in the
near field.
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Figure 5.20. Acoustic pressure spectrum at R = 60ro, θ = 50◦ in the
far field and acoustic pressure spectra at x = 20ro, r = 15ro in the
near field.
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Figure 5.21. Acoustic pressure spectrum at R = 60ro, θ = 80◦ in the
far field and acoustic pressure spectra at x = 11ro, r = 15ro in the
near field.
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6. LES AND AEROACOUSTICS OF HIGH REYNOLDS

NUMBER JETS

Visbal and Rizzetta [87] and Visbal et al. [88] have recently performed some LES

calculations of various turbulent flows without using any explicit SGS model. In

those simulations, spatial filtering was treated as an implicit SGS model. They

also showed that use of an SGS model in those simulations did not produce any

results superior to those obtained without employing an SGS model. Bogey and

Bailly [33], [34] also did some LES calculations for jet flows by using spatial filtering

only. It is well understood in turbulent flows that the energy cascade is associated

with a mean flux of energy that is directed from large scales towards small scales.

The large scales contain the major part of the turbulent kinetic energy and they

continuously feed the turbulent kinetic energy via the cascade to the smallest eddies

where it is dissipated. Since the grid resolution is too coarse to resolve all the

relevant length scales in an LES, the pile-up of energy at the high wavenumbers can

be eliminated through the use of a spatial filter. Hence, the spatial filter can be

thought of as an effective SGS model in an LES. In this chapter, we will perform

some jet simulations with and without an SGS model and look at the quantitative

differences between such simulations. In the first section, two simulations which were

performed without an explicit SGS model will be presented. The first simulation in

the first section exactly matches a previous test case studied by Bogey and Bailly [34].

Results of this simulation will compared with those of Bogey and Bailly [34]. The

second simulation employs a slightly different inflow forcing than the one used in the

first one, and all other parameters are kept the same as the ones used in the first

simulation. Both the mean flow and the jet acoustic field obtained in the second

simulation will be compared to those of the first simulation. Finally, the second



114

section in this chapter will present the results of a test case performed with the

dynamic Smagorinsky SGS model and compare the results with those corresponding

to the simulation done without an SGS model.

6.1 Simulations Performed without an Explicit SGS Model

6.1.1 Reynolds Number 400,000 Isothermal Round Jet Simulation

An LES was performed without any explicit SGS model for a turbulent isothermal

round jet at a Mach number of 0.9 and Reynolds number of 400, 000. The tri-diagonal

spatial filter was treated as an implicit SGS model. The filtering parameter was set

to αf = 0.47. The jet centerline temperature was chosen the same as the ambient

temperature and set to 286K. A fully curvilinear grid consisting of approximately

16 million grid points was used in the simulation. The grid had 390 points along

the streamwise x direction and 200 points along both y and z directions. The grid

structure was very similar to the one used in the previous chapter. This test case

corresponds to one of the test cases studied by Bogey and Bailly [34]. The physical

portion of the domain in this simulation extended to 35 jet radii in the streamwise

direction and 30 jet radii in the transverse directions. The following mean streamwise

velocity profile was imposed on the inflow boundary

ū(r) =
Uo

2

[
1 + tanh

[
10

(
1 −

r

ro

)]]
. (6.1)

This profile has a thinner jet shear layer than the one used in the previous Reynolds

number 100,000 simulation. There are about 14 grid points in the initial jet shear

layer. The following Crocco-Buseman relation for an isothermal jet is again specified

for the density profile on the inflow boundary [33]

ρ̄(r) = ρo

(
1 +

γ − 1

2
M2

r

ū(r)

Uo

(
1 −

ū(r)

Uo

))−1

, (6.2)

where Mr = 0.9.

In a recent study, Bogey and Bailly [34] took a close look at the effects of the inflow

conditions on the jet flow and noise. They found out that reducing the amplitude
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of the initial disturbances results in an increase in radiated noise. On the other

hand, a thinner initial jet shear layer thickness was observed to cause increased noise

levels in the sideline direction and reduced noise levels in the downstream direction.

The most important changes were obtained when the first 4 azimuthal modes of

forcing were removed. In this case, the noise levels were noticeably reduced. They

concluded that further improvements are still needed to reduce the sideline noise

levels which are overestimated with respect to experimental data. The reader is

referred to Reference [34] for more detailed information. Based on their findings, we

decided to use the inflow forcing which was found by Bogey and Bailly [34] to match

the available experimental data best. There are 16 azimuthal modes total and the

first 4 modes are not included in the forcing. The forcing parameter α is set to 0.007.

Computations were done on an IBM-SP3 machine using 200 processors in parallel.

A total of about 5.5 days (132 hours) of computing time was needed. The initial

transients exited the domain over the first 10,000 time steps. Time history of the

unsteady flow data inside the jet was saved at every 10 time steps over period of

40,000 time steps. These data are used in the volume integrals in the next chapter

where the far field noise of jet is computed using Lighthill’s acoustic analogy. The

sampling period corresponds to a time scale in which an ambient sound wave travels

about 23 times the domain length in the streamwise direction.

Figures 6.1 through 6.6 show the one-dimensional spectra of the streamwise ve-

locity fluctuations at various locations in the flowfield. Taylor’s hypothesis of frozen

turbulence was used together with the temporal spectra of the streamwise veloc-

ity fluctuations at the given locations to compute the one-dimensional spectra of

the streamwise velocity fluctuations. As can be seen from the spectra, the one-

dimensional spectra become almost flat as the axial wavenumber approaches zero.

We also show the grid cutoff wavenumber corresponding to our grid resolution at the

given locations. Before the grid cutoff wavenumber, all spectra exhibit a decay which

is quite similar to Kolmogorov’s −5/3 decay rate prediction in the inertial range of

turbulence. Hence, a portion of the inertial range of turbulence is resolved at the
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given locations. Mean flow and turbulence statistics results from this simulation will

be shown later in this section when we compare our results with those of Bogey and

Bailly [34].

Another task performed in this test case was to investigate the sensitivity of far

field noise predictions to the position of the control surface on which aeroacoustic

data are collected. For this purpose, we put 3 control surfaces around our jet as

illustrated in figure 6.7. This figure plots the divergence of velocity contours on a

plane that cuts the jet in half. By analyzing these contours, one can clearly identify

the non-linear sound generation region inside the jet flow as well as the linear acoustic

wave propagation outside the jet. The control surfaces start 1 jet radius downstream

of the inflow boundary and extend to 35 jet radii along the streamwise direction.

Hence the total streamwise length of the control surfaces is 34ro. Control surface 1,

2 and 3 are initially at a distance of 3.9, 5.9 and 8.1 jet radii from the jet centerline,

respectively. They open up to a distance of 9.1, 10.8 and 12.2 jet radii from the jet

centerline, respectively, at the far downstream location of 35ro. We gathered flow

field data on the control surfaces at every 5 time steps over a period of 25, 000 time

steps during our LES run. The total acoustic sampling period corresponds to a time

scale in which an ambient sound wave travels about 14 times the domain length

in the streamwise direction. Both the Ffowcs Williams - Hawkings and Kirchhoff’s

methods were employed in the far field noise predictions. It should be noted that

the control surfaces employed here are open surfaces. The main assumption in the

surface integral acoustics methods is that the control surface must be placed outside

the non-linear flow region. It is known from the study conducted by Brentner and

Farassat [65] that Kirchhoff’s method will yield inaccurate predictions if one puts a

control surface in the non-linear region and does not include any further corrections to

account for the non-linearities. On the other hand, the Ffowcs Williams - Hawkings

method can produce some reasonable predictions depending on how strong the non-

linearities are in the region where the control surface is placed. In fact, one can

take the non-linearities into account accurately by including the quadrupole sources
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outside the control surface in the original Ffowcs Williams - Hawkings formulation.

The disadvantage of including this term is that computationally expensive volume

integrals are needed for its computation.

For simplicity, we decided to use open control surfaces in the first part of this

study. Flow data needed by Kirchhoff’s and the Ffowcs Williams - Hawkings methods

were gathered on the lateral surfaces surrounding the jet only. No data were gathered

on the inflow and outflow surfaces. Towards the end of this section, we will also

show far field noise predictions obtained by including the contribution of the data

gathered on an outflow surface. No refraction corrections [64] will be used when the

outflow surface is included and only the Ffowcs Williams - Hawkings method will be

employed in that case.

The far field acoustic pressure signals were calculated at 36 equally spaced az-

imuthal points on a full circle at a given θ location on a far field arc. The radius of

the arc is equal to 60 jet radii and its center is chosen as the jet nozzle exit. θ values

on the arc range from 25◦ to 90◦ with an increment of 5◦. As explained in section

2.4.3, the run time of the Kirchhoff code is almost the same as that of the Ffowcs

Williams - Hawkings code. For control surface 1, the computation of the 4096-point

time history of acoustic pressure at a given far field location with both methods took

about 6 minutes of computing time using 136 processors in parallel on an IBM-SP3.

Hence, for control surface 1, both methods needed a total of 50 hours to compute

the acoustic pressure history at a total of 504 far field points. Calculations on con-

trol surface 2 and 3 using 136 processors in parallel required 59 and 65 hours total,

respectively.

Figures 6.8 through 6.13 plot the acoustic pressure spectra at various points

located on the far field arc. The comparisons are done for 3 points on the arc which

are located at 45◦, 60◦ and 75◦, respectively, from the jet axis. The time signals

were broken into 4 1024-point signals which were then used in the Fast Fourier

Transforms to get the acoustic pressure spectra. We then averaged the acoustic

pressure spectra over the equally spaced 36 azimuthal points to obtain the final
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averaged spectrum at the given observer location. It should be mentioned here that

since the computed spectra are noisy, the spectra that are shown are polynomial

fits to the actual computed spectra. As can be seen from the figures 6.8 through

6.13, for a given control surface, the Ffowcs Williams - Hawkings and Kirchhoff’s

methods give almost identical results. Although not shown here, comparisons at

other locations along the arc yielded the same observations. This means that all of

the control surfaces chosen in this study were indeed sufficiently far away from the

jet (i.e., in the linear acoustic field) such that they did not encounter any non-linear

sound generation regions. Also, the grid allows wave propagation without diffusion.

Hence, the Kirchhoff’s method prediction was just as good as the Ffowcs Williams

- Hawkings method prediction for all control surfaces. The FWH code developed in

this study was already validated in the previous chapter by comparing the near field

noise spectra provided by the FWH method against the noise spectra computed

using the data directly provided by LES. The conclusion that Kirchhoff and the

FWH codes give almost identical predictions as long as the control surface does not

encounter any non-linearities automatically provides validation of the Kirchhoff code

developed in this study.

Assuming at least 6 points per wavelength are needed to accurately resolve an

acoustic wave using compact difference schemes, we see that the maximum frequency

resolved with our grid spacing around the control surfaces corresponds to a Strouhal

number of approximately 3.0, 2.0 and 1.5 for control surface 1, 2 and 3, respectively.

The Nyquist frequency, which is the maximum frequency that can be resolved with

the time increment of our data sampling rate, corresponds to a Strouhal number of

about 11.11. However, we choose the maximum frequency that is based on spatial

resolution as our cutoff frequency. The time increment used in the LES corresponds

to a Strouhal number of about 55.56. As will be evident shortly, 6 points per wave-

length are indeed to sufficiently resolve an acoustic wave using compact difference

schemes. When compared to the spectra predicted by control surface 1, the spectra

predicted by control surface 2 will show a drop-off starting at around Strouhal num-
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ber 2.0. Similarly, the spectra predicted by control surface 3 will show a drop-off

at around Strouhal number 1.5. Based on the data sampling rate, the number of

temporal points per period in these highest resolved frequencies are 8, 12, and 16,

respectively. Hence, the temporal resolution is adequate. Since grid stretching was

employed in the computational grid used in this simulation, the grid spacing gets

coarser towards the outer domain boundaries. This means that grid spacing around

control surface 1 is finer than that around control surface 2 and similarly the grid

spacing around control surface 2 is finer than that around control surface 3. Hence,

the maximum frequency that can be captured by a control surface decreases as one

puts the control surface further away from the jet. The spectra comparison figures

show solid vertical lines corresponding to the cutoff frequency for every control sur-

face. Until Strouhal number 1.5, the spectra predicted by the three control surfaces

are seen to be very similar. Then, the spectra predicted by control surface 3 starts

to drop sharply due to the fact that the grid spacing around control surface 3 is

too coarse to sufficiently resolve higher frequencies. Similarly, the spectra predicted

by control surface 2 are very similar to those predicted by control surface 1 until

Strouhal number 2.0 and then we observe a sharp drop in the spectra predicted by

control surface 2 for the higher frequencies. From the findings in this study, we see

that control surface 1 is the optimal surface to choose among the 3 control surfaces.

Control surface 1 does not go through any flow non-linearities even though it has

been placed quite close to the jet flow and at the same time it has a higher frequency

resolution than the other two control surfaces since the grid spacing around it is finer

than that around the other two surfaces.

It should be also mentioned at this point that although Bogey and Bailly [33], [34]

used a computational grid that is comparable in size to our grid, their cut-off Strouhal

number was 2.0 which is lower than our cut-off Strouhal number of 3.0 obtained with

control surface 1. In their LES calculations, Bogey and Bailly [33], [34] use direct

LES data in the immediate surroundings of the jet to evaluate the near field jet noise

only. They do not employ integral acoustics methods to estimate the far field noise.
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Since they directly compute the noise in the near field only, their computational grid

is more mildly stretched compared to ours. However, since we are employing integral

acoustics methods in our methodology to compute the far field noise, we choose to

pack most of the grid points inside the jet flow and do rapid grid stretching outside.

Then, placing a control surface such as control surface 1 quite close to the jet flow

allows us to obtain higher cut-off frequencies in the subsequent noise calculations.

The acoustic pressure spectra predicted by the 3 control surfaces were integrated

over their corresponding resolved frequency range to determine the overall sound

pressure levels (OASPL). The overall sound pressure level predictions of the Ffowcs

Williams - Hawkings and Kirchhoff’s methods using the data gathered on the 3

control surfaces are respectively given in figures 6.14 and 6.15. Since control surface

3 has the lowest cutoff frequency, the OASPL values predicted by control surface 3

are slightly lower than those predicted by control surface 2. Similarly, the OASPL

values predicted by control surface 2 are lower than those predicted by control surface

1 that has the highest cutoff frequency. It should also be noted here that since a

relatively short domain length of 34ro was used in this study, the streamwise length

of the control surfaces is not sufficient to capture the acoustic waves travelling at the

shallow angles, i.e., θ < 40◦. Hence, the predicted OASPL values show a sharp drop-

off at the shallow angles. At this point, the reader is reminded of the study done in

the previous chapter in which the effect of the control surface streamwise length on

the far field noise at shallow angles was shown (see figure 5.18). Figures 6.16 and 6.17

compare the OASPL predictions of the Ffowcs Williams - Hawkings and Kirchhoff’s

methods with the experimental data as well as with the SAE ARP 876C [84] database

prediction and the previous Reynolds number 100,000 jet LES result. Although

the numerical predictions are a few dB louder than the experiments, the overall

agreement is encouraging. One reason for the overprediction of the numerical results

relative to experimental measurements is believed to be the inflow forcing employed

in the simulations. To see the impact of the inflow forcing on the noise, we will do

a new simulation with a modified inflow forcing in the next section.
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Next, we will do comparisons of our acoustic pressure spectra at 2 observation

points with those of Bogey and Bailly [34]. Figures 6.18 and 6.19 do the comparisons

at the observation points x = 29r0, r = 12ro and x = 11r0, r = 15ro, respectively.

Our spectra at these points were computed by coupling the data on control surface 1

with the Ffowcs Williams - Hawkings method, while those of Bogey and Bailly [34]

are based on data directly provided by their LES. As can be seen from figure 6.18,

the two spectra are quite similar at the observation point x = 29r0, r = 12ro. At

this observation point, the cutoff frequency of Bogey and Bailly [34] corresponds to

Strouhal number of 2.0 while our cutoff frequency is at Strouhal number 3.0 since

that is the maximum frequency we can accurately resolve using the data gathered on

control surface 1. These cutoff frequencies are also shown in the figure. It is seen that

the spectrum of Bogey and Bailly is a few dB louder than ours. Figure 6.19 shows

the spectra comparison at the observation point at x = 11r0, r = 15ro. This time,

Bogey and Bailly’s [34] cutoff frequency correspond to Strouhal number of about

1.1 due to their coarsened grid spacing at the given observation point. Our cutoff

frequency at this location is still 3.0. The figure shows that Bogey and Bailly’s [34]

spectrum is similar to ours until Strouhal number 1.1, then their spectrum exhibits a

sharp drop-off while ours continues until Strouhal number 3.0. Again, it is observed

that their spectrum is a few dB louder than ours. At this stage, one might wonder

as to why the far field noise predictions of Bogey and Bailly [34] are not identical

to ours since exactly the same inflow forcing was used and all other flow parameters

were kept the same in both simulations. The answer is to be found in the different

numerical methods used in the two simulations. Bogey and Bailly [34] employed

high-order accurate explicit finite differencing and explicit spatial filtering schemes

in their calculations, whereas we have used implicit compact differencing and implicit

spatial filtering schemes in our simulation. Since different numerical techniques have

different characteristics, the differences observed are not surprising.

The differences between the two simulations can be further examined by compar-

ing some mean flow quantities and turbulence statistics. The streamwise variation



122

of the mean jet centerline velocity profile and the half velocity radius are given in

figures 6.20 and 6.21, respectively. Bogey and Bailly [34] have assumed the end

of the jet potential core as the streamwise location where the jet mean centerline

velocity is 0.95 times the value of the inflow boundary. Following this definition,

we see that the potential core of the jet simulated by Bogey and Bailly [34] has a

length of 12ro, whereas our jet’s potential core length is about 13ro. Other than this

difference, the streamwise variation of the mean jet centerline velocity in the two

simulations is qualitatively similar. The half velocity radius variations are also quite

similar. The almost linear growth of the half velocity radius starts a short distance

downstream of the end of the jet potential core in both simulations. As mentioned

in the previous chapter, Raman et al. [81] measured a potential core length of about

10ro for jets with initially transient shear layers, while Arakeri et al. reported a value

of about 14ro for a Mach 0.9, Reynolds number 500,000 jet with initially transient

shear layers. Potential core lengths of about 14ro have been measured by Raman

et al. [81] and Lau et al. [83] for high Reynolds number jets with initially turbulent

shear layers. The potential core lengths obtained from the computations compare

reasonably well with the experimental measurements.

The streamwise profiles of the root mean square of the fluctuating axial and radial

velocities along r = ro are plotted in figures 6.22 and 6.23, respectively and compar-

isons are done with the corresponding profiles of Bogey and Bailly [34]. Although

our profiles and theirs are qualitatively similar, their profiles have higher peak levels

than ours. Furthermore, their peaks are located slightly downstream of ours. Bogey

and Bailly [34] have observed that the sideline noise levels are directly linked to the

radial velocity fluctuations in the shear layer. They showed that the lower the peak

of the radial velocity fluctuations in the jet shear layer, the lower the sideline noise

levels. This observation and the fact that the peak of our fluctuating radial velocity

profile given in figure 6.22 is lower than that of Bogey and Bailly [34] explain why

our acoustic pressure spectrum at the x = 11r0, r = 15ro observation location is

lower than theirs over the frequency range 0 < St < 1.1 in figure 6.19. The reader
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is once again reminded of the fact that the Bogey and Bailly’s [34] spectrum has a

cutoff frequency at St = 1.1 at this observation location. Figures 6.24 and 6.25 show

the centerline variation of the root mean square of the fluctuating axial and radial

velocities and compare them with those of Bogey and Bailly [34]. Our centerline

profiles peak at a location downstream of their peaks. Our peaks are also seen to

be lower than those of Bogey and Bailly [34]. Our peak values for (v ′x)rms/Uo and

(v′r)rms/Uo on the jet centerline are 0.117 and 0.100, respectively, while those of Bo-

gey and Bailly [34] are 0.120 and 0.106, respectively. Arakeri et al. [82] obtained an

experimental value of 0.12 for the peak (v′x)rms/Uo on the centerline of a jet with

initially transient shear layers. The experimental jet studied by Arakeri et al. [82]

was a Mach 0.9 jet with Reynolds number 500,000. Lau et al. [83] measured a peak

value of 0.14 for (v′x)rms/Uo on the centerline of a Mach 0.9, Reynolds number 1

million jet with initially turbulent shear layers. Lau et al. [83] also reported a value

of 0.11 for the peak (v′r)rms/Uo on the jet centerline from the same experiment. The

numerical predictions for the peak (v′x)rms/Uo and (v′r)rms/Uo on the jet centerline

are seen to be in reasonable agreement with the experimental measurements. In

their study, Bogey and Bailly [34] have also noted that the downstream noise levels

are related to the centerline turbulence intensities. They showed that the lower the

peak of the centerline turbulence intensities, the lower the downstream noise levels.

Since our jet’s centerline turbulence intensities are lower than those of Bogey and

Bailly [34], we can now see why our spectrum at the x = 29r0, r = 12ro location is

lower than theirs.

The aeroacoustics results presented so far were obtained using an open control

surface. Due to the relatively short streamwise control surface length, the acoustic

pressure signals at observation angles less than 40◦ on the far field arc were not

accurately captured. To see the effects of closing the control surface at the outflow,

a new study was conducted. A new control surface that starts one jet radius down-

stream of the inflow boundary and extends to 31ro in the downstream direction was

generated. This control surface is the same as the open control surface 1 used in the
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aeroacoustics studies presented earlier in this section. The current control surface

is truncated at x = 31ro whereas the previous open control surface extended up to

x = 35ro. The outflow surface of the new control surface was placed at x = 31ro.

Since the physical portion of the domain ends at around x = 35ro, placing the out-

flow surface a few radii away from the end of the physical domain ensures that the

flow data gathered on the outflow surface are not affected by the presence of the

sponge zone. The data gathered on the new control surface were coupled with the

Ffowcs Williams - Hawkings method to compute the far field noise. No refraction

corrections were included when the control surface was closed on the outflow surface.

The Ffowcs Williams - Hawkings method required about 59 hours of computing time

on 136 POWER3 processors of an IBM-SP3 to compute the 4096-point time history

at a total of 504 far field points. Figure 6.26 plots the OASPL predictions on the

far field arc which were obtained using the data gathered on the closed control sur-

face and makes comparisons with other data. The OASPL values at all observation

angles are shifted up by some amount when the control surface is closed at the out-

flow. The effect of the closed control surface appears to be minimal for the range of

observation angles where 50◦ < θ < 65◦, though. The increase of the OASPL at the

shallow observation angles is expected, however, we clearly see a spurious effect for

the range where θ > 80◦. The OASPL profile in this range is very slowly decreasing

with the observation angle. A similar observation was recently made by Rahier et

al. [89] who conducted a study of surface integral acoustic methods and looked at the

sensitivity of far field noise results to the placement of closed control surfaces in the

non-linear flow field. The spurious effect observed here is attributed to the fact that

we have placed a control surface inside the non-linear flow region ignoring the noise

due to the quadrupole sources outside the control surface. Rahier et al. [89] also

gave the same reason for the similar spurious effects they have observed. We also

believe that an effective line of dipole sources is created as the quadrupoles exit the

downstream surface. These dipole sources can also be partially responsible for the

spurious effects observed here. It is believed that moving the outflow surface further
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downstream will reduce the strength of the line of dipoles appearing on the outflow

surface. Finally, we look at the acoustic pressure spectra predictions at the θ = 30◦,

θ = 60◦, and θ = 90◦ locations on the far field arc. Figure 6.27 shows the two spectra

at the θ = 30◦ observation point which were computed using the open and closed

control surfaces. It is clear that at the θ = 30◦ location, the spectral energy is shifted

up at all frequencies when the control surface is closed on the outflow surface. The

spectra at θ = 60◦ computed using the open and closed control surfaces are shown in

figure 6.28. The differences in the two spectra are minor at this observation point,

hence the outflow surface does not have much influence on the noise spectrum at

the θ = 60◦ observation location. The comparison at θ = 90◦ depicted in figure 6.29

once again shows that closing the outflow surface increases the spectral energy levels

at all frequencies at this observation point.

6.1.2 Reynolds Number 400,000 Isothermal Round Jet Simulation with

a Modified Inflow Forcing

To see the influence of the inflow forcing on the jet mean flow field and the far

field noise, a new simulation was performed for the Reynolds number 400,000 jet

using a modified inflow forcing. There are again 16 azimuthal forcing modes total

and this time the first 6 modes are not included in the forcing. The forcing parameter

α is set to 0.007, same as before. All other parameters are kept the same as those

in the previous simulation in which only the first 4 modes were removed from the

forcing.

The streamwise variation of the mean jet centerline velocity profile and the half

velocity radius are given in figures 6.30 and 6.31, respectively. Comparisons are

done with the previous simulation data as well as with the simulation of Bogey and

Bailly [34]. The reader is once again reminded here that the simulation of Bogey and

Bailly [34] employed an inflow forcing in which only the first 4 modes of a total of 16

azimuthal modes were removed. It is interesting to see our simulation in which the
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first 6 modes modes were removed matches the results of Bogey and Bailly [34] better.

Assuming that the end of the jet potential core is the streamwise location where the

jet mean centerline velocity is 0.95 times the value of the inflow boundary, we see that

our jet’s potential core length in the current simulation is about 12.5ro, whereas it

was 13ro in the previous simulation. The streamwise profiles of the root mean square

of the fluctuating axial and radial velocities along r = ro are plotted in figures 6.32

and 6.33, respectively and comparisons are again done with the previous simulation

as well as with the profiles of Bogey and Bailly [34]. The peak of the fluctuating axial

velocity profile in the shear layer with the modified inflow forcing is seen to be slightly

lower than that in the previous simulation, whereas the peak of the fluctuating radial

velocity profile in the present simulation is higher. The larger peak fluctuating radial

velocity in the shear layer implies that the sideline noise levels will be higher in the

current simulation. Figures 6.34 and 6.35 show the centerline variation of the root

mean square of the fluctuating axial and radial velocities and make comparisons with

the previous simulation as well with the profiles of Bogey and Bailly [34]. Relative

to the original forcing, the modified inflow forcing results in the higher values of the

centerline turbulence intensities. The larger peak turbulence intensities along the jet

centerline mean that the noise levels in the downstream direction will be higher. Our

peak values for (v′x)rms/Uo and (v′r)rms/Uo on the jet centerline are 0.129 and 0.106,

respectively. In the previous simulation with the original forcing, they were 0.117

and 0.100, respectively. Once again, the experimental value obtained by Arakeri et

al. [82] for the peak (v′x)rms/Uo on the centerline was 0.12 for a Mach 0.9, Reynolds

number 500,000 jet with initially transient shear layers. The values measured by Lau

et al. [83] for the peak (v′x)rms/Uo and (v′r)rms/Uo on the centerline of a Mach 0.9,

Reynolds number 1 million jet with initially turbulent shear layers were 0.14 and

0.11, respectively.

An open control surface exactly the same as control surface 1 used in the previous

section was placed around the jet flow in this test case and flow data were gathered

on this surface during the LES run. The streamwise length of the control surface
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is 34ro. This control surface has a maximum frequency resolution that corresponds

to Strouhal number 3.0. The data on the control surface were coupled with the

Ffowcs Williams - Hawkings method for the far field noise calculations. The acoustic

pressure at θ = 45◦, 60◦, 75◦ locations on the far field arc are plotted in figures 6.36,

6.37 and 6.38, respectively. From these figures, it is clear that the modified inflow

forcing modifies the acoustic pressure spectra at all observation points and moreover,

causes more energetic far field pressure fluctuations. This is not surprising since the

previous analysis of the turbulence intensities along the jet centerline and in the

shear layer already implied higher noise levels. Finally, we plot the OASPL levels

along the far field arc in figure 6.39 and do comparisons with the previous simulation.

The OASPL values increase at all observation points on the on arc. The increase is

on the order of 1 dB for large observation angles while it is less than 1 dB for smaller

angles.

The findings in this section clearly demonstrate the impact of the inflow forcing

on the jet mean flow, turbulence intensities as well as on the jet acoustic field.

They also explain the discrepancies between numerical noise predictions and actual

experimental measurements. It appears that one needs to match the actual nozzle

exit conditions in an experiment as closely as possible in order to be able to get good

agreement of the numerical noise predictions with the experimental data. Improved

inflow boundary conditions need to be developed for this purpose. Another option

could be to include the actual nozzle geometry in the computations so as the get

away from the artificial inflow forcing although this seems to be a computationally

more challenging task.
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6.2 Reynolds Number 400,000 Isothermal Round Jet Simulation with

the Dynamic Smagorinsky Model

To see the effects of an explicit SGS model on the flowfield and far field noise, a

new simulation was performed by employing the dynamic Smagorinsky model (DSM)

in the LES. All parameters in this simulation are kept the same as those used in the

previous ReD = 400, 000 jet simulation in which the first 4 modes of the forcing

were removed. Spatial filtering is also employed in this case so as to remove the

very high frequency spurious oscillations not supported by the grid resolution. The

tri-diagonal spatial filter with the filtering parameter set to αf = 0.47 is used in the

current simulation for that purpose. The turbulent Prandtl number was set to a

constant value of 0.7 while the compressibility correction constant in the SGS model

was set to 0. With the DSM model turned on, the LES code required about 50%

more computing time than the previous LES done with filtering only. Hence, a total

of about 200 hours of run time was needed for this simulation using 200 POWER3

processors on an IBM-SP3.

The streamwise variation of the mean jet centerline velocity profile and the half

velocity radius are plotted in figures 6.40 and 6.41, respectively and comparisons are

done with the previous simulation done without an SGS model. From these figures,

it is clear that both the decay of the mean jet centerline velocity and the growth of

half velocity radius take place faster when an SGS model is employed. The stream-

wise profiles of the root mean square of the fluctuating axial and radial velocities

along r = ro are plotted in figures 6.42 and 6.43, respectively and comparisons are

again done with the simulation done without an SGS model. The peak intensities

of the fluctuating axial and radial velocities in the shear layer of the current sim-

ulation are seen to be slightly lower than those in the simulation done without an

SGS model. The lower peak fluctuating radial velocity in the shear layer means that

the sideline noise levels will be lower in the current simulation. Figures 6.44 and

6.45 show the centerline variation of the root mean square of the fluctuating axial
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and radial velocities and make comparisons with the simulation done without an

SGS model. The centerline peak turbulence intensities in the current simulation are

higher than those in the simulation done without an SGS model. The larger peak tur-

bulence intensities along the centerline imply higher noise levels in the downstream

direction. Figures 6.46 and 6.47 compare the temporal spectra of the streamwise

velocity fluctuations at the x = 17.5ro and x = 25ro locations on the jet centerline,

respectively. The x = 17.5ro location is where the peak of the streamwise veloc-

ity fluctuations are reached in both simulations. As can be seen from the spectra

comparisons, the low frequencies which correspond to the large scales of turbulent

motions are more energetic in the simulation done with the dynamic Smagorinsky

model. The higher frequencies which correspond to the finer scales, however, are

more energetic in the simulation done without an SGS model. The presence of more

energetic finer scales in the simulation done without an SGS model will be more

evident when the far field noise spectra are presented later in this section. The eddy

viscosity of the DSM clearly causes a reduction of the turbulent kinetic energy in the

finer scales. Because of this, the finer scales that the larger scales in the simulation

done with the DSM have to feed are less “hungry” compared to the finer scales in

the simulation done without an SGS model. Hence, the portion of the turbulent

kinetic energy drained from the large scales towards the finer scales in the simula-

tion done with the DSM must be smaller than that in the simulation done without

an SGS model. Consequently, there is more turbulent kinetic energy residing in

the large scales when the eddy viscosity based SGS model is employed in the LES.

Comparison of some of the Reynolds stress profiles at two downstream locations are

shown in figures 6.48 through 6.51. The Reynolds stress profiles from the previous

Reynolds number 100,000 jet simulation are also included in the comparisons. From

the comparison with experimental profiles, it is clear the self-similarity region is not

reached at around x = 30ro in any of the simulations. To re-iterate, our analysis of

the Reynolds number 100,000 jet in the previous chapter showed that a streamwise

domain length of at least 60 jet radii is needed in order for the Reynolds stresses
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to become truly self-similar in the Reynolds number 100,000 jet. As mentioned in

the previous chapter, the Reynolds number of the jet is also believed to have an

influence on how quickly the self-similarity region is reached. The experiments of

Wygnanski and Fiedler [66] give a distance of about 100 jet radii downstream of the

jet nozzle for the start of the self-similarity region in high Reynolds number jets,

whereas Freund’s DNS for a Reynolds number 3,600 jet [2] shows the start of the

self-similarity region at around x = 25ro in a low Reynolds number jet. Going back

to the Reynolds stress comparisons, we see that the profiles at x = 25ro and x = 30ro

in the Reynolds number 400,000 simulations are lower than those in the Reynolds

number 100,000 jet simulation. For the Reynolds number 400,000 jet, the Reynolds

stress comparisons show that the Reynolds stress levels in the simulation done with

the DSM are higher relative to those in the simulation without an SGS model. This

observation can again be explained by using the above discussion of the distribution

of the turbulent kinetic energy among the different length scales of motion in the two

simulations. Due to the way the turbulent kinetic energy is distributed among the

different length scales, integration of the spectra gives rise to higher levels of velocity

fluctuations in the simulation done with the DSM and consequently higher Reynolds

stresses. So it seems the more energetic finer scales in the simulation done without

an SGS model drain more energy from the large scales. This observation can also

be used to explain why the jet half velocity radius and the decay of the mean jet

centerline velocity are slower in the simulation without an SGS model. It is believed

that the large scale structures of the jet in that simulation lose more energy to finer

scales via the energy cascade and hence the jet does not have as much energy left to

spread out.

During this simulation, aeroacoustic data were gathered on a closed control sur-

face that starts one jet radius downstream of the inflow boundary and extends to

31ro in the downstream direction. This control surface is the same as the closed

control surface used in the first section of this chapter. Far field noise computa-

tions were done by excluding the outflow surface (open closed surface) and also by
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including the outflow surface (closed control surface). Comparison of the acoustic

pressure spectra with the results from the simulation done without an SGS model

at the observation angles of θ = 45◦, 60◦, 75◦ on the far field arc are presented in

figures 6.52 through 6.54, respectively. These predictions were obtained using the

open control surface. The spectral energy contained within the low frequencies are

seen to be higher in the noise spectra computed from the simulation done with the

DSM. This must be due to the presence of more energetic large turbulent scales

in the simulation done with the DSM since it is the large scales that are responsi-

ble for low frequency noise generation. On the other hand, the spectra computed

from the simulation with the DSM have significantly lower spectral energy at the

higher frequencies. This is because the finer scales in the simulation done with the

DSM have lower turbulent kinetic energy due to the well-known dissipative effect

of eddy viscosity that acts on a wide range of well-resolved wavenumbers. Hence

such scales in the simulation done with the DSM are far less effective in creating

high frequency noise. Figure 6.55 plots the OASPL values along the far field arc

obtained by using the data gathered on the open control surface. The figure shows

that the OASPL values at the shallow angles are higher in the simulation done with

the DSM. This is due to the fact that the lower frequencies are more dominant at the

shallow observation angles and moreover, there is more spectral energy contained in

the low frequencies at the shallow observation angles when the DSM is employed.

Once again, the higher spectral energy in the lower frequencies is related to the

more energetic large scales of motion when the DSM is employed. Consequently, the

spectra obtained from the simulation with the DSM give higher OASPL values at

the shallow observation angles. On the other hand, the OASPL values at the higher

observation angles are lower in the simulation done with the DSM. This is obviously

due to the fact that higher frequencies are more dominant at the larger observation

angles and there is much less energy contained in the high frequencies of the spectra

obtained from the simulation with the DSM. Figure 6.56 shows the OASPL values

along the far field arc computed by using the data gathered on the closed control
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surface. As it has been observed earlier, the use of a closed control surface tends to

shift the OASPL values by some amount at all observation angles. The figure also

shows higher OASPL values at the shallow angles and lower OASPL values at the

larger observation angles when the DSM is employed. The discrepancy previously

observed for θ > 80◦ (see section 6.1.1) is also observed here and the reason for this

discrepancy was explained earlier. Finally, the comparison of the acoustic pressure

spectra at the θ = 30◦ location is shown in figure 6.57. These spectra were computed

using the data gathered on the closed control surface. Both spectra have their peak

at the same frequency at this observation location. Once again, the spectral energy

contained within the lowest frequencies is higher while the spectral energy within

the higher frequencies is lower for the noise spectrum computed from the simulation

done with the DSM.

The effects of the SGS model on noise predictions have been shown. The main

conclusion from this study is that the jet noise is sensitive to the SGS model. When

the dynamic Smagorinsky model is employed in an LES, the spectral energy in the

high-frequency part of the noise spectra is significantly reduced due to the eddy

viscosity. LES with filtering only, on the other hand, predicts increased spectral

energy levels at the higher frequencies. At this point, it is not possible to reach a

definitive conclusion about which LES approach is the best. From a computational

standpoint, an LES done using the dynamic Smagorinsky model is 50% more time

consuming than an LES done with filtering only.

It is also of interest to look at the effects of the jet Reynolds number on the

noise. For this purpose, we will compare the present LES done with the dynamic

Smagorinsky model for the Reynolds number 400,000 jet with the previous LES

done with the dynamic Smagorinsky model for the Reynolds number 100,000 jet.

The spectra comparisons at the observation angles of θ = 45◦, 60◦, 75◦ on the far

field arc are presented in figures 6.58 through 6.60, respectively. Since the cut-off

Strouhal number in the Reynolds number 100,000 jet LES was 1.0, the spectra of the

two jets are plotted until Strouhal number 1.0. The spectra comparisons show that
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the low frequency part of the noise spectra is more energetic for the lower Reynolds

number jet. We should also note that the larger domain size used in the Reynolds

number 100,000 jet LES might result in a better resolution of the low frequencies.

The peaks of the lower Reynolds number jet noise spectra are slightly lower than

those of the higher Reynolds number jet noise spectra. On the other hand, the

spectrum decay after the peak happens faster for the lower Reynolds number jet. It

is well known that the range of turbulent length scales gets wider with increasing

Reynolds number. Because of the wider range of turbulent eddies in the higher

Reynolds number jet, the drain of the turbulent kinetic energy from the very large

scales towards the finer scales is greater in a higher Reynolds number jet than in

a lower Reynolds number jet. Hence, the lower Reynolds number jet apparently

creates more energetic low frequency noise while the higher Reynolds number jet

creates more energetic higher frequency noise. From the comparisons, it is evident

that the spectra of the higher Reynolds number jet decay more slowly.

The Reynolds stresses from the present LES done with the dynamic Smagorinsky

were previously compared with those from the LES done with the dynamic Smagorin-

sky model for the Reynolds number 100,000 jet in figures 6.48 through 6.51. These

comparisons show that at a given downstream location, the Reynolds stress profiles

of the lower Reynolds number jet are higher than those of the Reynolds number

400,000 jet. This suggests that the lower Reynolds number jet will reach the self-

similarity region quicker than the higher Reynolds number jet. Hence, a higher jet

Reynolds number delays the start of the self-similarity region. To re-iterate, this

observation is supported by the experiments of Wygnanski and Fiedler [66] which

give a distance of about 100 jet radii downstream of the jet nozzle for the start of

the self-similarity region in high Reynolds number jets, and also by Freund’s DNS [2]

that shows the start of the self-similarity region at around x = 25ro in a low Reynolds

number jet.
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Figure 6.1. One-dimensional spectrum of the streamwise velocity
fluctuations at the x = 15ro location on the jet centerline.
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Figure 6.2. One-dimensional spectrum of the streamwise velocity
fluctuations at the x = 25ro location on the jet centerline.
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Figure 6.3. One-dimensional spectrum of the streamwise velocity
fluctuations at the x = 15ro, y = ro, z = 0 location.
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Figure 6.4. One-dimensional spectrum of the streamwise velocity
fluctuations at the x = 25ro, y = ro, z = 0 location.



136

kxro

E
(

k xr
o
)

/U
o2
r o

5 10 15 20
10-7

10-6

10-5

10-4

10-3

10-2

10-1

( kx ro )-5/3

Grid cutoff

Figure 6.5. One-dimensional spectrum of the streamwise velocity
fluctuations at the x = 15ro, y = 2ro, z = 0 location.
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Figure 6.6. One-dimensional spectrum of the streamwise velocity
fluctuations at the x = 25ro, y = 2ro, z = 0 location.
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Figure 6.7. Schematic showing the 3 open control surfaces surrounding the jet flow. (Divergence of velocity
contours are shown.)
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Figure 6.8. The Ffowcs Williams - Hawkings method prediction for
the acoustic pressure spectra at R = 60ro, θ = 45◦ location on the
far field arc.
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Figure 6.9. Kirchhoff’s method prediction for the acoustic pressure
spectra at R = 60ro, θ = 45◦ location on the far field arc.
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Figure 6.10. The Ffowcs Williams - Hawkings method prediction for
the acoustic pressure spectra at R = 60ro, θ = 60◦ location on the
far field arc.
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Figure 6.11. Kirchhoff’s method prediction for the acoustic pressure
spectra at R = 60ro, θ = 60◦ location on the far field arc.
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Figure 6.12. The Ffowcs Williams - Hawkings method prediction for
the acoustic pressure spectra at R = 60ro, θ = 75◦ location on the
far field arc.
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Figure 6.13. Kirchhoff’s method prediction for the acoustic pressure
spectra at R = 60ro, θ = 75◦ location on the far field arc.
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Figure 6.14. Overall sound pressure levels along the far field arc
obtained with the data gathered on the 3 control surfaces and the
Ffowcs Williams - Hawkings method.

θ (deg)

O
A

SP
L

(d
B

)

20 30 40 50 60 70 80 90
104

106

108

110

112

114

116

LES + Kirchhoff Control Surface 1
LES + Kirchhoff Control Surface 2
LES + Kirchhoff Control Surface 3

Figure 6.15. Overall sound pressure levels along the far field arc
obtained with the data gathered on the 3 control surfaces and Kirch-
hoff’s method.
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Figure 6.16. The Ffowcs Williams - Hawkings method prediction for
the overall sound pressure levels along the far field arc and compari-
son with other data.
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Figure 6.17. Kirchhoff’s method prediction for the overall sound
pressure levels along the far field arc and comparison with other
data.
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Figure 6.18. The Ffowcs Williams - Hawkings method prediction for
the acoustic pressure spectrum at x = 29r0, r = 12ro and comparison
with the spectrum of Bogey and Bailly [34].
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Figure 6.19. The Ffowcs Williams - Hawkings method prediction for
the acoustic pressure spectrum at x = 11r0, r = 15ro and comparison
with the spectrum of Bogey and Bailly [34].



144

x / ro

U
c

/U
o

0 5 10 15 20 25
0.4

0.5

0.6

0.7

0.8

0.9

1

Current LES
Bogey and Bailly’s LES

Figure 6.20. Axial profile of the mean jet centerline velocity and
comparison with the profile of Bogey and Bailly [34].
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Figure 6.21. Axial profile of the jet half velocity radius and compar-
ison with the profile of Bogey and Bailly [34].
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Figure 6.22. Axial profile of the root mean square of axial fluctuating
velocity along r = ro and comparison with the profile of Bogey and
Bailly [34].
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Figure 6.23. Axial profile of the root mean square of radial fluctuat-
ing velocity along r = ro and comparison with the profile of Bogey
and Bailly [34].
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Figure 6.24. Centerline profile of the root mean square of axial
fluctuating velocity and comparison with the profile of Bogey and
Bailly [34].
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Figure 6.25. Centerline profile of the root mean square of radial
fluctuating velocity and comparison with the profile of Bogey and
Bailly [34].
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Figure 6.26. Overall sound pressure levels along the far field arc
obtained using the open and closed control surfaces of streamwise
length 30ro.
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Figure 6.27. Acoustic pressure spectra at R = 60ro, θ = 30◦ location
on the far field arc. (Obtained using the open and closed control
surfaces of streamwise length 30ro.)
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Figure 6.28. Acoustic pressure spectra at R = 60ro, θ = 60◦ location
on the far field arc. (Obtained using the open and closed control
surfaces of streamwise length 30ro.)
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Figure 6.29. Acoustic pressure spectra at R = 60ro, θ = 90◦ location
on the far field arc. (Obtained using the open and closed control
surfaces of streamwise length 30ro.)



149

x / ro

U
c

/U
o

0 5 10 15 20 25
0.4

0.5

0.6

0.7

0.8

0.9

1

Original inflow forcing
Modified inflow forcing
Bogey and Bailly’s LES

Figure 6.30. Axial profiles of the mean jet centerline velocity and
comparison with the profile of Bogey and Bailly [34].
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Figure 6.31. Axial profiles of the jet half velocity radius and com-
parison with the profile of Bogey and Bailly [34].
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Figure 6.32. Axial profiles of the root mean square of axial fluctuating
velocity along r = ro and comparison with the profile of Bogey and
Bailly [34].
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Figure 6.33. Axial profiles of the root mean square of radial fluctu-
ating velocity along r = ro and comparison with the corresponding
profile of Bogey and Bailly [34].
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Figure 6.34. Centerline profiles of the root mean square of axial
fluctuating velocity and comparison with the profile of Bogey and
Bailly [34].

x / ro

(v
r’

) rm
s
/U

o

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Original inflow forcing
Modified inflow forcing
Bogey and Bailly’s LES

Figure 6.35. Centerline profiles of the root mean square of radial
fluctuating velocity and comparison with the corresponding profile
of Bogey and Bailly [34].
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Figure 6.36. Acoustic pressure spectra at R = 60ro, θ = 45◦ location
on the far field arc. (Obtained using the open control surface of
streamwise length 34ro.)
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Figure 6.37. Acoustic pressure spectra at R = 60ro, θ = 60◦ location
on the far field arc. (Obtained using the open control surface of
streamwise length 34ro.)
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Figure 6.38. Acoustic pressure spectra at R = 60ro, θ = 75◦ location
on the far field arc. (Obtained using the open control surface of
streamwise length 34ro.)
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Figure 6.39. Overall sound pressure levels along the far field arc.
(Obtained using the open control surface of streamwise length 34ro.)
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Figure 6.40. Axial profiles of the mean jet centerline velocity.
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Figure 6.41. Axial profiles of the jet half velocity radius.
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Figure 6.42. Axial profiles of the root mean square of axial fluctuating
velocity along r = ro.
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Figure 6.43. Axial profiles of the root mean square of radial fluctu-
ating velocity along r = ro.
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Figure 6.44. Centerline profiles of the root mean square of axial
fluctuating velocity.
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Figure 6.45. Centerline profiles of the root mean square of radial
fluctuating velocity.
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Figure 6.46. Temporal spectrum of the streamwise velocity fluctua-
tions at the x = 17.5ro location on the jet centerline.
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Figure 6.47. Temporal spectrum of the streamwise velocity fluctua-
tions at the x = 25ro location on the jet centerline.
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Figure 6.48. Normalized Reynolds normal stress σxx profiles.
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Figure 6.49. Normalized Reynolds normal stress σrr profiles.
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Figure 6.50. Normalized Reynolds normal stress σθθ profiles.

r / r1/2

σ rx

0 0.5 1 1.5 2 2.5
0

0.005

0.01

0.015

0.02

0.025

Hussein et al. data
Panchapakesan and Lumley data
x = 25ro (Dynamic Smagorinsky)
x = 30ro (Dynamic Smagorinsky)
x = 25ro (No SGS model)
x = 30ro (No SGS model)
x = 25ro profile of ReD = 105 jet
x = 30ro profile of ReD = 105 jet

Figure 6.51. Normalized Reynolds shear stress σrx profiles.
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Figure 6.52. Acoustic pressure spectra at R = 60ro, θ = 45◦ location
on the far field arc. (Obtained using the open control surface of
streamwise length 30ro.)
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Figure 6.53. Acoustic pressure spectra at R = 60ro, θ = 60◦ location
on the far field arc. (Obtained using the open control surface of
streamwise length 30ro.)
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Figure 6.54. Acoustic pressure spectra at R = 60ro, θ = 75◦ location
on the far field arc. (Obtained using the open control surface of
streamwise length 30ro.)
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Figure 6.55. Overall sound pressure levels along the far field arc.
(Obtained using the open control surface of streamwise length 30ro.)
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Figure 6.56. Overall sound pressure levels along the far field arc.
(Obtained using the closed control surface of streamwise length 30ro.)
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Figure 6.57. Acoustic pressure spectra at R = 60ro, θ = 30◦ location
on the far field arc. (Obtained using the closed control surface of
streamwise length 30ro.)
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Figure 6.58. Effect of jet Reynolds number on the noise spectra at
R = 60ro, θ = 45◦ location on the far field arc.
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Figure 6.59. Effect of jet Reynolds number on the noise spectra at
R = 60ro, θ = 60◦ location on the far field arc.
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Figure 6.60. Effect of jet Reynolds number on the noise spectra at
R = 60ro, θ = 75◦ location on the far field arc.
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7. COMPUTATION OF THE FAR FIELD NOISE USING

LIGHTHILL’S ACOUSTIC ANALOGY

In this chapter, we will compute the far field noise of the Reynolds number 400,000

jet using Lighthill’s acoustic analogy. As mentioned in the previous chapter, data

from the simulation which was performed without any explicit SGS model will be

used for this purpose. The spatial filter was treated as the effective SGS model in

the LES. Estimation of the far field noise of this jet using Kirchhoff’s and the Ffowcs

Williams - Hawkings methods was presented in the previous chapter. Far field noise

computations done using Lighthill’s acoustic analogy will be compared with the

Ffowcs Williams - Hawkings method results as well as with some experimental noise

spectra in this chapter.

Lighthill’s equation [15] can be written as

∂2ρ′

∂t2
− c2∞

∂2ρ′

∂xi∂xj

=
∂2Tij

∂xi∂xj

, (7.1)

where the Lighthill stress tensor, Tij is given as

Tij = ρuiuj + (p− c2∞ρ)δij, (7.2)

with the viscous stress term neglected. In Lighthill’s equation, all effects other than

propagation, such as refraction, are lumped into the right hand side. It should be

stated here that the right hand side of the above equation is by no means a true

or unique representation of the acoustic sources in the turbulent flow. The double

divergence of Tij only serves as a nominal acoustic source and what it provides is an

exact connection between the near field turbulence and the far field noise.

Lighthill’s equation is exact and has the following solution for the far field pressure

fluctuations generated by an unbounded flow [15],

p− p∞ = (ρ− ρ∞)c2∞ =
1

4π

∫

V

∂2

∂yi∂yj

Tij

(
y, t−

|x − y|

c∞

)
dy

|x − y|
, (7.3)
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where x, y are the observer and source coordinates, respectively, and the integra-

tion is carried over the entire turbulent volume containing the acoustic sources. In

Lighthill’s acoustic analogy, the sound generated by a turbulent flow is equivalent to

what the quadrupole distribution Tij per unit volume would emit if placed in a uni-

form acoustic medium at rest. In other words, in this analogy the quadrupole source

distribution replaces the actual fluid flow and moreover, the sources may move, but

the fluid in which they are embedded may not. The sources are embedded in a

medium at rest that has the constant properties ρ∞, p∞ and c∞, the same as those

in the ambient fluid external to the flow.

The above integral is the formulation in which the double divergence of Tij is

used. At points far enough from the flow region, Lighthill shows that the following

equation can be alternatively used to get an approximation to the far field pressure

fluctuations [15],

p−p∞ = (ρ−ρ∞)c2∞ ≈
1

4π

∫

V

(xi − yi)(xj − yj)

|x − y|3
1

c2∞

∂2

∂t2
Tij

(
y, t−

|x − y|

c∞

)
dy. (7.4)

This equation is the time derivative formulation of Lighthill’s volume integral. It may

be preferable to use the time derivative formulation over the spatial derivative for-

mulation since the spatial derivative formulation seems to be more computationally

expensive.

The time derivative formulation of Lighthill’s volume integral will be used in this

chapter for computing the far field noise. Following Freund [90], we can split the

Lighthill stress tensor, Tij into a mean component, Tm
ij , a component that is linear

in velocity fluctuations, T l
ij, a component that is quadratic in velocity fluctuations,

T n
ij and the so-called entropy component, T s

ij, as follows

Tij = Tm
ij + T l

ij + T n
ij + T s

ij, (7.5)

where

Tm
ij = ρūiūj + (p̄− c2∞ρ̄)δij, (7.6)

T l
ij = ρūiu

′
j + ρūju

′
i, (7.7)



167

T n
ij = ρu′iu

′
j, (7.8)

T s
ij = (p′ − c2∞ρ

′)δij. (7.9)

By definition, the mean component Tm
ij does not make noise. In the above equations,

density in the ρuiuj terms has not been decomposed into a mean and fluctuating

part. Freund [90] shows that the noise from Tij is nearly the same as that from

T ρ̄
ij = ρ̄uiuj + (p′ − c2∞ρ

′)δij. (7.10)

Hence, the effect of the density fluctuations in the ρuiuj terms is not considered in

this study. The noise from T l
ij is called the shear noise since this component consists

of turbulent fluctuations interacting with the sheared mean flow. On the other hand,

the noise from T n
ij is called the self noise since this component consists of turbulent

fluctuations interacting with themselves, whereas the noise from T s
ij is called the

entropy noise since it is composed of the density and pressure fluctuations in the

turbulent flow.

The 5 primitive flow variables were saved in nearly 7.5 million cell volumes inside

the jet flow at every 10 time steps over a period of 40,000 time steps during the LES

run. The sampling period corresponds to a time scale in which an ambient sound

wave travels about 23 times the domain length in the streamwise direction. The

flow data were saved in double precision format and the entire flow field database

consisted of almost 1.2 Terabytes (TB) of data. Figures 7.1 through 7.3 depict

the distribution of the Lighthill sources that radiate noise in the direction of the

observers located at 30◦, 60◦, and 90◦ on an arc of radius 60ro from the jet nozzle.

The solid dark lines in these figures correspond to the boundaries of the volume in

which time accurate LES data were saved. The volume starts at the inflow boundary

and extends to 32 jet radii in the streamwise direction. The initial width and height

of the volume are 10ro at the inflow boundary. At x = 32ro, the width and height

of the volume are 20ro. As can be seen from the figures, the lateral boundaries are

sufficiently far away from the sources that radiate noise. After a careful analysis of

the spatial extent of the sources that radiate noise and based on the grid resolution in
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the region where the sources are located, the cut-off frequency in the subsequent noise

calculations was found to be located at around Strouhal number 4. Based on the data

sampling rate, there are about 4 temporal points per period in this highest resolved

frequency. An 8th-order accurate explicit scheme will be employed for computing the

time derivatives while computing the noise and 4 points per period is sufficient for

this numerical scheme [48] whose details will be presented shortly. It should also be

noted here that this cut-off frequency is higher than the Strouhal number 3 cut-off

frequency of the previous aeroacoustics computations that employed surface integral

acoustics methods. This is because the grid spacing is finest inside the jet and gets

coarser outside the jet flow. Hence, the maximum frequency that can be accurately

captured by the control surfaces placed around the jet flow is lower than that can be

captured in the volume integrals. Using the 5 primitive variables and the mean flow

data, one can easily compute Tij and all of its components. To compute the noise

of Tij or one of its components, the following procedure was used. A retarded time

based on the distance between the observer location and the source point inside the

jet was computed first. Then, a 24-point time stencil was constructed around the

retarded time point such that 12 points fell to the left and 12 points fell to the right

of the retarded time point. These 24 points correspond to the time history points

at which LES flow data were saved. Using the following 8th-order accurate, 9-point

explicit finite difference scheme developed by Bogey and Bailly [48], the second time

derivative of the source term was computed at the 4 points to the left and 4 points

to the right of the retarded time point.

f ′
i =

1

∆t

4∑

n=0

dn(fi+n − fi−n), (7.11)

where f
′

i is the approximation of the first time derivative of f at time history point i

and fi denotes the value of f at time point i. The coefficients dn are given as follows,

d0 = 0 d1 = 0.841570125482 d2 = −0.244678631765,

d3 = 0.059463584768 d4 = −0.007650904064. (7.12)
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It should be noted here that the above explicit finite difference was originally de-

rived to compute the first derivative of a given variable, hence we applied it twice

successively to get the second time derivative. Furthermore, to reduce the num-

ber of quantities whose second time derivative need to be computed, we first take

the product of Tij (or one of its components) with (xi − yi)(xj − yj) (see the time

derivative formulation of the volume integral) and compute the time derivative of

the resulting quantity instead. This operation reduces the number of quantities to

be time differentiated from 24 to 4. The source time derivatives at the 8 time history

points were then used in a cubic spline interpolation subroutine of the NAG soft-

ware library to get the second time derivative of the source term at the retarded time

point. This value was then used in the integrand appearing in the volume integral.

The turbulent flow region is divided into many cell volumes and the volume integrals

are performed in a discrete sense by adding up the contributions from all cell vol-

umes. Lighthill’s volume integral was computed using 1160 processors in parallel on

the Lemieux cluster at the Pittsburgh Supercomputing Center. Computation of the

3072-point time history of the noise from Tij, T
l
ij, T

n
ij, and T s

ij took about 8 minutes

of computing time per observer point.

As we had done previously, we computed the overall sound pressure levels and

acoustic pressure spectra along a far field arc of radius 60ro from the jet nozzle in this

study. There are 14 observer points on the far field arc. Even though acoustic pres-

sure spectra were averaged over 36 equally spaced azimuthal points on a full circle at

a given observer location in the previous chapters, we determined through numerical

experimentation that averaging the spectra over 8 equally spaced azimuthal points

gives almost the same averaged spectrum as that obtained by averaging the spectra

over 36 equally spaced azimuthal points. Hence, in order to save computing time, the

acoustic pressure signals were computed at only 8 equally spaced azimuthal points

on a full circle at a given θ location on the arc. The 3072-point time signal at a given

observer location was then broken up into 3 1024-point signals and the 1024-point

signals were used in the spectral analysis. Hence, there were a total of 24 1024-point
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signals available for a given observer point on the arc. The 24 acoustic pressure

spectra were used to obtain the averaged spectrum which was integrated later to

compute the overall sound pressure level at the given θ location on the arc. For 112

far field points, the total run time needed was about 15 hours on 1160 processors.

The distribution of the Lighthill sources that radiate noise in the direction of

the observers located at 30◦, 60◦, and 90◦ on the far field arc was previously shown

in figures 7.1 through 7.3. As can be seen from these figures, although the sources

near the outflow boundary at x = 32ro seem to be relatively weak for the observers

located at 30◦ and 60◦ on the arc, the sources that radiate noise in the direction of

the observer at 90◦ are still strong near the outflow boundary. So it seems like a

longer streamwise domain length is necessary in order for the convecting acoustics

sources to sufficiently decay. The implications of truncating the domain at x = 32ro

will be discussed in more detail shortly.

We first looked at the effect of the integration domain size on the far field noise

estimations. For this purpose, Lighthill’s volume integral was carried out for 3

different streamwise domain lengths. The domain lengths considered were 24ro, 28ro

and 32ro, respectively. Figure 7.4 shows the Lighthill’s volume integral predictions for

the 3 different streamwise domain lengths and makes comparisons with experimental

data as well as with the open and closed control surface predictions of the Ffowcs

Williams - Hawkings method from the previous chapter. From this figure, it is clear

that as the integration domain size is increased from 24ro to 32ro, the overall sound

pressure levels at all observation angles other than those in the range 60◦ < θ < 80◦,

decrease as much as 2 dB. The changes in OASPL for observation angles greater

than 90◦, on the other hand, are on the order of 2 to 3 dB. This observation implies

that there are significant noise cancellations taking place as one includes a longer

streamwise length in the volume integration and such cancellations cause a reduction

in the overall sound pressure levels for certain observation angles in the far field. The

difference in the OASPL predictions when the integration domain size is increased

from 28ro to 32ro is within 1 dB for the observation angles θ < 80◦. The OASPL curve
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that is obtained when the integration domain length is 32ro has an almost flat portion

in the range where 80◦ < θ < 120◦. On the other hand, the experimental data show

a continuous drop at those observation angles. The spurious effects observed here

are quite similar to those observed in the previous chapter when the Ffowcs Williams

- Hawkings method was applied on a closed control surface. It is also interesting to

note that the MGB method [91] shows that the sources beyond 32ro in a jet are not

significant. This is evident in figure 7.5 which plots the OASPL predicted by MGB

versus θ for various streamwise lengths. It can also be argued at this point that the

sudden truncation of the domain in the current computations creates spurious dipole

sources on the outflow surface as the quadrupole sources pass through downstream

surface. Such spurious dipole sources could also be partially responsible for the

behavior seen in the OASPL plot for the range where θ > 80◦. Since all acoustic

sources decay as we move downstream, a longer streamwise domain will improve

the predictions for θ > 80◦. In his study, Freund [90] also observed substantial noise

cancellations happening among the noise generated in different streamwise sections of

the jet, however he did not get the spurious effects we observe here. His streamwise

domain size was 31ro. So it appears that although the acoustic sources decay by

x = 31ro for a low Reynolds number jet, they have a larger streamwise extent in the

present high Reynolds number jet.

Figures 7.6 through 7.8 depict the overall sound pressure levels from the individ-

ual components T l
ij, T

n
ij and T s

ij, respectively for the 3 different streamwise domain

sizes over which volume integrations are done. The OASPL values of the shear noise

from T l
ij show less than 2 dB difference for some observation angles in the range

θ < 80◦ while we see 2 to 3 dB difference in the OASPL values for observation angles

in the range θ > 80◦ as the integration domain is increased from 24ro to 32ro. On

the other hand, the OASPL values of the self noise from T n
ij show very small differ-

ences for observation angles θ < 80◦ and less than 1 dB difference for θ > 80◦, while

there are only minor changes in the OASPL values of the entropy noise from T s
ij at

all observation angles as the integration domain size is increased from 24ro to 32ro.
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Although not shown here, analysis of the shear noise spectra for observer angles

θ > 80◦ revealed decreasing spectral energy at the higher frequencies with increas-

ing integration domain size. It is evident from these observations that the acoustic

sources located in the region x > 32ro which were not captured in the current LES

are most likely to alter the shear noise from T l
ij for observer angles θ > 80◦.

Figure 7.9 shows the OASPL values of the noise from Tij and its individual

components T l
ij, T

n
ij and T s

ij when the streamwise integration domain extends up to

32ro. Even though the current jet is an isothermal jet (To/T∞ = 1), the entropy

noise from T s
ij is significant near the jet axis where the observation angle is small,

but becomes insignificant at large angles. It is also observed from the figure that

the shear noise from T l
ij and the self noise from T n

ij are louder than the total noise

due to Tij for observation angles θ < 40◦ while the entropy noise from T s
ij is louder

than the total noise for θ < 15◦. The shear noise reaches its minimum OASPL value

at around θ = 80◦ and starts to increase for larger angles, whereas the self noise

exhibits a continuous drop. The fact that the shear noise, self noise and entropy noise

components are more intense that the total noise for some observation angles near

the jet axis means that the noise from the different components must be correlated

as suggested by Freund [90] so that significant cancellations are happening among

the noise generated by the individual components. To see the correlation between

the noise components, we can define the following correlation coefficients [90],

Cln =
〈plpn〉

pl
rmsp

n
rms

, Cls =
〈plps〉

pl
rmsp

s
rms

, Cns =
〈pnps〉

pn
rmsp

s
rms

, (7.13)

where the superscripts l, n, and s indicate the shear noise from T l
ij, the self noise

from T n
ij and the entropy noise from T s

ij, respectively. The correlation coefficients

Cln, Cls and Cns are plotted in figure 7.10. For observation angles in the range

θ < 40◦, the shear noise from T l
ij cancels the self noise from T n

ij with a correlation

coefficient on the order of -0.6. There is also some correlation between the self

noise from T n
ij and the entropy noise from T s

ij at the small observation angles where

the correlation coefficient has a value around -0.3. The shear noise from T l
ij and

the entropy noise from T s
ij also cancel each other at very small angles near the
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jet axis with a correlation coefficient of almost -0.3. The correlation coefficient

between these two noise components starts to rapidly move towards zero as the

observation angle increases and reaches a positive value in between 0.1 and 0.2 at

the θ = 40◦ observation point. It then starts to approach towards the zero line

for larger observation angles. All correlations reach a value close to zero at around

θ = 80◦ and θ = 90◦ locations. Since it was concluded from figure 7.6 that the

acoustic sources located in the region x > 32ro are expected to alter the shear noise

for the observation angles θ > 80◦, the correlation coefficients that involve the shear

noise are probably not very accurate for observation angles in the range θ > 80◦.

Figures 7.11 through 7.14 depict the acoustic pressure spectra at the observation

angles of 30◦, 60◦, 90◦ and 120◦ on the far field arc. Comparisons are shown for 3

streamwise domain lengths over which Lighthill’s volume integral is carried out. As

mentioned earlier, the cut-off noise frequency in the current computations is located

around Strouhal number 4, hence the portion of the spectra for frequencies greater

than Strouhal number 4 are missing. The spectra at the θ = 60◦ location show

minor changes as the integration domain is increased from 24ro to 32ro, whereas

there are more significant changes at the other 3 observation angles. At the 30◦ and

90◦ observation angles, the high frequency part of the spectra shifts down as the

integration domain increases along the streamwise direction. At the 120◦ location,

we observe a secondary high frequency peak in the spectra which is located in be-

tween Strouhal number 3.5 and 4. It is interesting to see the spectral energy at the

second peak decreases slightly, whereas the spectral energy contained in the frequen-

cies in between the primary and the secondary peaks decreases significantly as the

integration domain size increases. Once again, the decrease in the spectral energy

at certain frequencies is due to the significant cancellations taking place among the

noise generated by the sources in different regions of the jet.

Next, we look at the noise spectra of the individual components of Tij at the

observation locations of 30◦, 60◦, 90◦ and 120◦ on the far field arc. Figures 7.15

through 7.18 plot the total noise from Tij, shear noise from T l
ij, self noise from T n

ij
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and entropy noise from T s
ij for these observation angles. As can be see in figure 7.15,

at 30◦, the peak of the shear noise spectrum coincides with that of the total noise at

around Strouhal number 0.3. The peak of the experimental noise spectra at the 30◦

observation location has also been observed at around Strouhal number 0.25 - 0.3.

We see the high frequency part of both the shear noise and the self noise spectra

is more energetic than that of the total noise. The entropy noise is relatively weak

over most of the frequency range when compared with the shear noise and the self

noise. Figure 7.10 shows that at the observation angle of 30◦, the shear noise and

the self noise cancel each other with a correlation coefficient of about -0.6, whereas

the self noise and the entropy noise cancel each other with a correlation coefficient

of about -0.3. Hence, the interaction of the shear noise, self noise and entropy noise

at the 30◦ location results in a total noise spectrum that that has reduced spectral

energy levels in the high frequency range.

From figure 7.16, it is seen that the total noise spectrum is very similar to the

self noise spectrum at the 60◦ location. The portion of the shear noise spectrum for

Strouhal number greater than 2 has the same spectral energy levels as the self noise

spectrum. Except for the low frequency region, the entropy noise is very weak over

the entire frequency range. From figure 7.10, we now see that at the observation

angle of 60◦, the shear noise and the self noise cancel each other with a correlation

coefficient of about -0.4, whereas the self noise and the entropy noise cancel each

other with a correlation coefficient of about -0.15. Such an interaction among the

noise components at the given observation point causes the total noise spectrum to

be essentially the same as the self noise spectrum.

Figure 7.17 shows the noise spectrum of Tij and its components at the θ = 90◦

location. Although the shear noise spectrum appears to be slightly more energetic

than the self noise spectrum at this observation angle, the reader is reminded of

our earlier analysis which revealed that noise sources located in the region x > 32ro

which were not captured in the current LES are expected to further reduce the shear

noise for observation angles θ > 80◦. Hence, the actual shear noise spectrum at the
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90◦ observation angle should have reduced spectral energy levels. Nevertheless, the

current spectra comparison shows that the total noise is louder than both the shear

noise and the self noise until about Strouhal number 2. For higher frequencies, the

spectral energy level of the total noise spectrum comes in between the the shear noise

and self noise spectral energy levels. This must be due to the slight cancellations

taking place since figure 7.10 gives a correlation coefficient of about -0.05 between

the shear and self noise components at the 90◦ observation angle. Once again, the

entropy noise is very weak over the entire frequency range except in the low frequency

region.

Finally, we look at the noise spectra at the 120◦ location which are given in

figure 7.18. A very interesting observation is that the although the entropy noise is

relatively weak in the frequency range where the Strouhal number is less than 2.5, it

jumps up to a significant peak value at a frequency close to Strouhal number 4. The

total noise spectrum also forms a secondary peak at a frequency in between Strouhal

number 3.5 and 4. The self noise spectrum has lower spectral energy levels than the

total noise spectrum at all frequencies and it also forms a secondary peak in between

Strouhal number 3.5 and 4. The shear noise spectrum, on the other hand, has greater

spectral energy levels than the total noise spectrum over some of the frequency range.

It exhibits a drop in the spectral energy from the primary peak until Strouhal number

3.5, and then it seems to be leveling off. It is perhaps moving towards a secondary

peak that is located at a frequency greater than Strouhal number 4. The shear noise

and the self noise cancel each other at the 120◦ location with a correlation coefficient

of about -0.3 that can be seen from figure 7.10. The reader is again reminded here

that the actual shear noise spectrum at this observation location should have reduced

spectral energy levels due to the sound sources located in the region x > 32ro.

It seems appropriate at this point to compare the current far field noise spec-

tra predictions with the results previously obtained by using the Ffowcs Williams

- Hawkings method and also with some experimental noise spectra obtained from

the NASA Glenn Research Center [92]. Experimental noise data from a Mach 0.85
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cold jet will be shown in the comparisons. The Mach number of this jet is close

enough to that of our simulated jet. The estimated Reynolds numbers of the exper-

imental jet is approximately 1.2 million, while the ratio of the jet temperature to

the ambient temperature is 0.88. The far field noise spectra of the experimental jet

were obtained at 40 jet diameters away from the nozzle. In order to facilitate the

comparison with numerical results, the experimental noise spectra were shifted to 30

jet diameters away from the nozzle using the 1/r decay assumption of the acoustic

waves. In this adjustment, the experimental SPL values were shifted upwards by

approximately 2.5 dB/St. Moreover, since the Mach number of the experimental

jet was not exactly 0.9, the experimental noise spectra were also adjusted for Mach

0.9 following the SAE ARP 876C guidelines [84]. The spectra obtained from the

previous Reynolds number 100,000 jet simulation presented in Chapter 5 will also

be included in the comparisons. Figures 7.19 through 7.21 make comparisons at the

observation locations of 30◦, 60◦ and 90◦, respectively. All spectra shown in these

figures are curve fits to the actual data. The Ffowcs Williams - Hawkings method

results for the Reynolds number 400,000 jet are shown both for the open and closed

control surfaces. The reader is reminded here that the open control surface extends

until x = 31ro and the outflow surface which closes the control surface is placed at

the x = 31ro location, whereas the Lighthill volume integral was performed until

the x = 32ro downstream location. The slight difference in the streamwise extent of

the surface and volume integrals is not expected to cause a significant difference in

the comparisons. The Ffowcs Williams - Hawkings method results for the Reynolds

number 100,000 jet were obtained using an open surface that extended 59ro in the

streamwise direction. At the 30◦ location, we see that the closed surface FWH

method prediction for the Reynolds number 400,000 jet is in fairly good agreement

with Lighthill’s acoustic analogy until Strouhal number 2 or so. Then, we observe

higher spectral energy levels in Lighthill’s acoustic analogy prediction for higher

frequencies. The open surface FWH method prediction for the Reynolds number

400,000 jet, on the other hand, shows lower spectral energy levels at all frequencies.
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This is due to the fact that the relatively short open control surface cannot effectively

capture the acoustic waves travelling at the shallow angles. It is interesting to note

that the agreement of the shape of the Reynolds number 100,000 jet noise spectrum

with the experimental spectrum until Strouhal number 1 is better than that between

the Reynolds number 400,000 jet noise spectra and the experiment. The reason for

this is believed to be the fact that the larger domain in the Reynolds number 100,000

LES allows a better evaluation of the lower frequencies. For the Reynolds number

400,000 jet, the Lighthill prediction seems to be showing the best qualitative agree-

ment with the experimental noise spectrum at this observation location. The peaks

of all noise spectra in the figure are seen to be in the Strouhal number 0.25 - 0.3

range. However, the experimental spectrum exhibits a much stronger decay right

after the peak. The decay rate of the spectrum obtained from Lighthill’s acoustic

analogy seems to be similar to the experimental spectrum decay rate in the frequency

range where 1.5 < St < 3.0. Then, the Lighthill spectrum decays with a faster rate

for the higher frequencies. At the 60◦ location, for the Reynolds number 400,000 jet,

the FWH method yields almost identical results for the open and the closed control

surfaces. The Lighthill prediction is also in acceptable agreement with the FWH

prediction, considering the fact that the two methods are based on completely dif-

ferent formulations. The comparison with the experimental noise spectrum at this

observation location reveals that the experimental peak is located at a lower fre-

quency than that of the numerical predictions. Furthermore, the numerical results

for the Reynolds number 400,000 jet show a faster spectrum decay rate at the higher

frequencies. The decay of the Reynolds number 100,000 jet spectrum after the peak

takes place at a faster rate than that observed in the Reynolds number 400,000 jet

spectra as well as in the experiment. Finally, the comparison at the 90◦ location

shows that the closed surface FWH prediction gives increased spectral energy levels

relative to those given by the open surface FWH prediction. The Lighthill predic-

tion is seen to be in between the two predictions given by the FWH method. It

should be reminded here once again that from our previous analysis, the spectra of
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the Reynolds number 400,000 jet for observation angles in the range θ > 80◦ are ex-

pected to be affected by the noise sources located in the far downstream region where

x > 32ro which were not captured in the current LES due to the short domain size.

The numerical predictions at this observation location once again reveal a spectrum

decay rate that is larger than that of the experimental noise spectra. The decay of

the the Reynolds number 100,000 jet spectrum takes place at a faster rate than that

of the Reynolds number 400,000 jet spectra. The experimental peak is again located

at a lower frequency than that of the numerical predictions. The comparison of the

numerical OASPL predictions against the OASPL values of the NASA Mach 0.85

cold jet along the far field arc is plotted in figure 7.22. We see OASPL differences as

high as 6 dB between the numerical predictions and the experimental measurements.

The differences observed between the numerical and experimental noise spectra

might be due to various reasons. One reason could be the mismatch of the inflow

conditions in the numerical simulations with those in the actual experiment. The

experiment was performed at a high enough Reynolds number so that the jet shear

layers at the nozzle exit were fully turbulent. In the numerical simulations, since it

was deemed computationally too expensive to include the nozzle geometry, laminar

shear layers were fed into the domain and randomized velocity fluctuations in the

form of a vortex ring were imposed into the jet shear layers. Moreover, it has been

observed experimentally [93], [94] that high-frequency sources are located a small

distance downstream of the jet nozzle and a significant portion of the noise spectrum

originates from this near field of the jet. Hence, the high-frequency noise generated

in the near-nozzle jet shear layer within a few diameters downstream of the nozzle

exit is missing in the current simulations. The absence of the noise generated just

downstream of the nozzle could be responsible for the faster decay rates in the high

frequency range of the spectra in the current computations. The present findings

once again emphasize the importance of correctly modelling the inflow conditions

in jet noise simulations. It is also believed that the limited domain size in the

simulations might influence the low frequencies.
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The Ffowcs Williams - Hawkings code was validated in earlier studies by com-

paring the FWH predictions with the direct LES data. The good agreement between

the Lighthill and the Ffowcs Williams - Hawkings predictions shown in this section

provides validation of the Lighthill code.

Finally, we will make a comparison of the computing times needed for Lighthill’s

acoustic analogy and for the Ffowcs Williams - Hawkings method. Lighthill’s acous-

tic analogy required about 15 hours of run time on 1160 processors of the Lemieux

cluster at the Pittsburgh Supercomputing Center to compute the 3072-point time

history of acoustic pressure at a total of 112 far field points. In comparison, for

the closed control surface computations, the Ffowcs Williams - Hawkings method

required about 59 hours of run time on 136 POWER3 processors of an IBM-SP3 to

compute the 4096-point time history of acoustic pressure at a total of 504 far field

points. The Ffowcs Williams - Hawkings method would require 44 hours to compute

the 3072-point time history of acoustic pressure at 504 far field points. The total

number of CPU hours needed by Lighthill’s acoustic analogy to compute the 3072-

point history at 112 far field points is 17,400. On the other hand, the total number

of CPU hours needed by the Ffowcs Williams - Hawkings method to compute the

3072-point history at 504 far field points is close to 6,000. The total number of CPU

hours needed by the Ffowcs Williams - Hawkings method for 112 far field points

would be about 1,333. Considering the fact that the Ffowcs Williams - Hawkings

code was run on an IBM-SP3 platform that is about 3 times slower than Lemieux, we

see that the Ffowcs Williams - Hawkings code would require about 444 CPU hours

total for 112 far field points if it was run on Lemieux. Based on these timings on

Lemieux, the ratio of the CPU hours needed for Lighthill’s acoustic analogy to that

need for the Ffowcs Williams - Hawkings method turns out to be almost 40/1. This

means that Lighthill’s acoustic analogy is 40 times more computationally expensive

than the Ffowcs Williams - Hawkings method.
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Figure 7.1. Instantaneous distribution of the Lighthill sources that
radiate noise in the direction of the observer at R = 60ro, θ = 30◦

on the far field arc.
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Figure 7.2. Instantaneous distribution of the Lighthill sources that
radiate noise in the direction of the observer at R = 60ro, θ = 60◦

on the far field arc.
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Figure 7.3. Instantaneous distribution of the Lighthill sources that
radiate noise in the direction of the observer at R = 60ro, θ = 90◦

on the far field arc.

θ (deg)

O
A

SP
L

(d
B

)

0 10 20 30 40 50 60 70 80 90 100 110 120
100

102

104

106

108

110

112

114

116

118

120

122

Lighthill’s integral until x = 24ro

Lighthill’s integral until x = 28ro

Lighthill’s integral until x = 32ro

LES+ FWH open control surface
LES+ FWH closed control surface
Mollo-Christensen et al. data (cold jet)
Lush data (cold jet)
Stromberg et al. data (cold jet)

Figure 7.4. Overall sound pressure levels of the noise from Tij along
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Figure 7.5. MGB method [91] prediction of the overall sound pressure
levels along the far field arc.
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Figure 7.7. Overall sound pressure levels of the self noise from T n
ij

along the far field arc.
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Figure 7.8. Overall sound pressure levels of the entropy noise from
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ij along the far field arc.
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Figure 7.11. Spectra of the noise from Tij at the R = 60ro, θ = 30◦

location on the far field arc.
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Figure 7.12. Spectra of the noise from Tij at the R = 60ro, θ = 60◦

location on the far field arc.
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Figure 7.13. Spectra of the noise from Tij at the R = 60ro, θ = 90◦

location on the far field arc.
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Figure 7.14. Spectra of the noise from Tij at the R = 60ro, θ = 120◦

location on the far field arc.
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Figure 7.15. Spectra of the noise from Tij and its components at the
R = 60ro, θ = 30◦ location on the far field arc.
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Figure 7.16. Spectra of the noise from Tij and its components at the
R = 60ro, θ = 60◦ location on the far field arc.
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Figure 7.17. Spectra of the noise from Tij and its components at the
R = 60ro, θ = 90◦ location on the far field arc.
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Figure 7.18. Spectra of the noise from Tij and its components at the
R = 60ro, θ = 120◦ location on the far field arc.
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Figure 7.19. Acoustic pressure spectra comparisons at the R = 60ro,
θ = 30◦ location on the far field arc.
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Figure 7.20. Acoustic pressure spectra comparisons at the R = 60ro,
θ = 60◦ location on the far field arc.
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Figure 7.21. Acoustic pressure spectra comparisons at the R = 60ro,
θ = 90◦ location on the far field arc.
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8. CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

8.1 Conclusions

Using state-of-the-art numerical techniques, we have developed and tested a Com-

putational Aeroacoustics (CAA) methodology for jet noise prediction. The CAA

methodology has two main components. The first one is a 3-D Large Eddy Simu-

lation (LES) code. The latest version of the LES code employs high-order accurate

compact finite differencing as well as implicit spatial filtering schemes together with

Tam and Dong’s boundary conditions on the LES domain boundaries. Explicit time

integration is accomplished by means of the standard 4th-order, 4-stage Runge-Kutta

method. The localized dynamic Smagorinsky subgrid-scale model is utilized to model

the effect of the unresolved scales on the resolved scales. The code also has the ca-

pability to turn off the dynamic SGS model and perform simulations by treating the

spatial filter as an implicit SGS model. The second component of the CAA method-

ology consists of integral acoustics methods. We have developed acoustics codes that

employ Kirchhoff’s and Ffowcs Williams - Hawkings methods as well as Lighthill’s

acoustic analogy.

We performed turbulence simulations of various jet flows on grids consisting up

to 16 million grid points. Jet mean flow, turbulence statistics and jet aeroacoustics

results were presented. The Reynolds numbers of the jets simulated in this study

ranged from as low as 3,600 up to as high as 400,000. The initial simulations per-

formed with the constant-coefficient SGS model showed the strong sensitivity of the

mean flow results to the choice of the model constant. To overcome the limitations

of the constant-coefficient SGS model, we implemented a localized dynamic SGS

model into the LES code. The mean flow and various turbulence statistics results
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compared reasonably well with the available experimental data of jets at similar

flow conditions. The time accurate LES data were coupled with integral acoustics

methods for far field noise calculations. Far field aeroacoustics results also compared

favorably with existing experimental measurements. However, it was shown that the

inflow forcing had a significant impact on the far field noise estimations. The effect

of the Smagorinsky SGS model on the far field noise is also important. It appears

that the eddy viscosity of the SGS model reduces the amplitude of the resolved

scale high-frequency acoustic waves. So it seems like the issues of inflow forcing

and SGS model effects on the jet noise need to resolved first through further studies

before jet LES calculations can be used with full confidence to obtain reliable noise

predictions. Comparison of the noise spectra of the Reynolds number 100,000 and

400,000 jets shows that the noise spectra of the higher Reynolds number jet decay

slower. The growth of the Reynolds stresses with increasing downstream distance

also seems to be dependent on the jet Reynolds number. This suggests that the

start of the self-similarity region also depends on the jet Reynolds number. In our

Reynolds number 400,000 jet simulations, the highest noise frequency resolved in

the surface integral acoustics calculations corresponded to Strouhal number 3, while

the highest frequency resolved when Lighthill’s acoustic analogy was employed cor-

responded to Strouhal number 4. Both of these frequencies are larger than Bogey

and Bailly’s cut-off frequency of Strouhal number 2 in their recent Reynolds number

400,000 jet LES [33], [34], [35]. Hence, to our best knowledge, the LES and the noise

computations done for the Reynolds number 400,000 jet in this study are certainly

some of the biggest calculations ever done in jet noise research. Moreover, our noise

computations for the Reynolds number 400,000 jet have cut-off frequencies which

are greater than the cut-off frequencies of all other jet noise LES results in the lit-

erature to date. Use of integral acoustics methods allows clustering of the majority

of the grid points inside the jet flow where non-linear noise generation takes place

and rapid grid stretching outside the jet. Consequently, the maximum frequency

resolved in noise computations using integral acoustics methods is higher compared
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to that captured in the simulations (with similar number of grid points) in which

only the near field jet noise is computed using direct LES data. Finally, to the best

of our knowledge, computation of the Lighthill volume integral over the turbulent

near field of a turbulent jet at a reasonably high Reynolds number has been carried

out for the first time in this study. The Lighthill stress tensor was decomposed into

several components and the noise generated by the individual components was ana-

lyzed in detail. It appears that a streamwise domain longer than 32ro is needed to

enclose the most significant acoustic sources. Far field noise predictions using the

FWH method on the closed control surface were found be comparable to those given

by Lighthill’s volume integral. Hence, it is preferable to use the relatively cheaper

FWH method over the very expensive Lighthill volume integral if one’s sole purpose

is to predict the far field noise. However, if a connection between the near field jet

turbulence and the far field noise is sought, then an analysis of the Lighthill source

term inside the jet would be very useful. Both Ffowcs Williams - Hawkings (applied

on a closed control surface) and Lighthill’s methods show increased OASPL levels

for observation angles greater than 80◦ on the far field arc. Such spurious effects are

believed to be due to the spurious line of dipoles appearing on the outflow surface

and the relatively short domain size in the streamwise direction.

8.2 Recommendations for Future Work

8.2.1 Improved Inflow Forcing and Near Nozzle Simulations

As mentioned in the Conclusions section, the simulations revealed the importance

of correctly modelling the inflow conditions. To get better agreement with experi-

mental measurements, an improved modelling of the inflow forcing is needed. More

rigorous mathematical models of the inflow conditions may be developed for this

purpose. However, this may be a challenging task. Recently, Glaze and Frankel [95]

studied the behaviors of two different stochastic inlet conditions which are intended

to simulate a turbulent inflow for a round jet. They tested a Gaussian random forcing
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technique as the baseline case, and a version of the weighted amplitude wave super-

position spectral representation method as an improved technique. They found that

the Gaussian random inlet fluctuations model turbulent inflow poorly and dissipate

almost immediately, whereas the spectral inlet fluctuations reproduce the jet near

field much more accurately and allow the flow to transition rapidly to self-sustaining

turbulence. The spectral inlet fluctuations studied by Glaze and Frankel [95] can

be implemented into the present LES code and new simulations can be performed

with this new inflow forcing technique. Another alternative could be to include the

actual nozzle geometry in the computations so as to get away from the artificial

inflow forcing. In this way, the turbulent shear layers at the nozzle lip could be di-

rectly computed as part of the LES. Including the actual nozzle in the computations,

on the other hand, will definitely make the LES calculations more challenging and

more expensive. However, with the technological advances rapidly taking place in

the computer industry, the computing power needed for these kind of computations

may be available to researchers in less than a decade.

Another interesting aspect of jet noise research is the high-frequency noise gen-

erated in the near-nozzle jet shear layer within a few diameters downstream of the

nozzle exit [96]. It has been observed experimentally [93], [94] that a significant

portion of the noise spectrum originates from this near field of the jet (before the

end of the jet potential core) where high-frequency sources are located. Experi-

mental observations [94], [97] suggest the possibility of a dipole type noise source

associated with the vortex-solid body interaction due to the presence of the nozzle.

The connection between the flow dynamics and the noise generation in this region

is poorly understood and needs to be investigated further. The conclusions drawn

from the experimental studies of Narayanan et al. [94] indeed justify the need for

computations of the near jet flowfield where high-frequency noise sources are known

to dominate. However, the usual practice in LES calculations to date has been to

neglect the nozzle geometry and hence the acoustically significant region just down-

stream of the nozzle. This is due to the obvious reason that it is computationally too
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expensive to include the actual nozzle in the computations. Laminar shear layers

are usually fed into the simulations and randomized perturbations are introduced

into the jet shear layers to mimic the actual jet shear layer conditions. Freund and

Lele [96], on the other hand, estimate that 150 - 200 million grid points are needed

in a high Reynolds number jet flow LES to accurately resolve the acoustically sig-

nificant region near the nozzle. The existing single-block LES/DNS code could be

to extended to a multi-block version which can be used for performing such sim-

ulations. In the multi-block implementation, a complex domain can be broken up

into several relatively simple domains and the already existing high-order accurate

single-block code could be easily used in each of the simpler domains simultaneously.

Grid point overlaps will be required to exchange data between adjacent sub-domains

during the course of the computations. A similar multi-block approach was followed

by Yao et al. [98] to do a DNS for a turbulent flow over a rectangular trailing edge.

Multi-domain implementation strategies similar to those studied by Gaitonde and

Visbal [99] as well as Zhang et al. [100] can be utilized while developing the multi-

block version of the code. The main goal in these simulations should be to analyze

the acoustically significant near-nozzle jet shear layer in great detail. For example,

the vortex-solid body interaction process which is suspected to be one of the pri-

mary sources of the near-nozzle high-frequency noise generation can be investigated

through numerical simulations. Although an LES on a grid of 200 million points

may seem too expensive on present day supercomputers, LES computations on grids

consisting of 300 million grid points are already being performed for wind turbine

noise predictions on the Japanese Earth Simulator machine at the time of this writ-

ing [101]. Hence, high fidelity jet noise computations are very likely to take place in

the near future once supercomputers as powerful as the Japanese Earth Simulator

become available to the research community within the US. As an intermediate step,

perhaps a calculation with a smaller domain, but including the nozzle lips using 50

- 80 million grid points should be attempted first.
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8.2.2 Acoustically Aware SGS Model

Improved SGS models need to be developed and implemented into LES calcula-

tions so as to get away from the undesired effects of the eddy viscosity on the noise

predictions. In other words, acoustically aware SGS models that do not affect the

already well-resolved portions of the noise spectra and that do not create spurious

noise need to be implemented into LES calculations. Filtering only without em-

ploying an explicit SGS model already seems to be a promising acoustically aware

implicit SGS model. The filtering operation only removes the energy pile-up at the

very high wavenumbers without affecting the well-resolved scales. However, more

studies in this area need to be done and comparisons with well documented exper-

imental jet noise spectra need to be performed to ensure the validity of the noise

predictions from LES that do filtering only without an SGS model. Good agreement

with experimental noise spectra, as mentioned earlier, will also demand inflow con-

ditions for LES that are as close as possible to the actual experimental nozzle exit

conditions.

8.2.3 Noise Model for Predicting High Frequency Noise of Unresolved

Scales

We were able to compute only a portion of the noise spectra in our LES calcu-

lations. The cutoff frequency was determined by the grid resolution. A model for

predicting the high frequency noise of the unresolved scales would be very attrac-

tive. As mentioned in the Introduction section of this report, even though there

has been some efforts on the investigation of the contribution of small-scales to the

noise spectrum [9], [10], [11], [12], [13], none of the LES studies in the literature

so far have predicted the high-frequency noise associated with the unresolved scales.

More research in this area that will lead to the development of subgrid-scale acoustic

models is needed.
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8.2.4 Spectral Makeup of the Lighthill Stress Tensor

It may be interesting to look into the wavenumber-frequency makeup of the

Lighthill stress tensor in order to gain some insight into the physics of jet noise

generation. Furthermore, the radiating and the non-radiating components of the

Lighthill stress tensor can be analyzed in detail. Due to time constraints, we were

unable to perform such analyses in this study. Data needed for such an analysis

are already available from our Reynolds number 400,000 jet LES. However, since

the current LES data were saved on a curvilinear grid and since the cylindrical

coordinate system is more suitable to analyze a round jet, it will be necessary to

interpolate the current data onto a cylindrical grid first. Such an interpolation

could be computationally expensive since our current data set is 1.2 Terabytes in

size. However, the interpolation should be feasible on a modern parallel computing

platform. Once the interpolation process is complete, Fourier transform techniques

similar to those used by Freund [2] could be used to analyze the spectral makeup of

the Lighthill stress tensor and to identify components capable of radiating to the far

field.
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